
Thomas Kitzberger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7063227/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 2010, 259, 660-684.	3.2	5,535
2	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	9.5	1,038
3	A synthesis of radial growth patterns preceding tree mortality. Clobal Change Biology, 2017, 23, 1675-1690.	9.5	394
4	Tree mortality across biomes is promoted by drought intensity, lower wood density and higher specific leaf area. Ecology Letters, 2017, 20, 539-553.	6.4	348
5	CLIMATIC AND HUMAN INFLUENCES ON FIRE REGIMES IN PONDEROSA PINE FORESTS IN THE COLORADO FRONT RANGE. , 2000, 10, 1178-1195.		338
6	Disturbance Regime and Disturbance Interactions in a Rocky Mountain Subalpine Forest. Journal of Ecology, 1994, 82, 125.	4.0	323
7	Contingent Pacific-Atlantic Ocean influence on multicentury wildfire synchrony over western North America. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 543-548.	7.1	292
8	Factors predisposing episodic drought-induced tree mortality in Nothofagus- site, climatic sensitivity and growth trends. Journal of Ecology, 2004, 92, 954-966.	4.0	269
9	Structural overshoot of tree growth with climate variability and the global spectrum of droughtâ€induced forest dieback. Global Change Biology, 2017, 23, 3742-3757.	9.5	234
10	FIRE HISTORY IN NORTHERN PATAGONIA: THE ROLES OF HUMANS AND CLIMATIC VARIATION. Ecological Monographs, 1999, 69, 47-67.	5.4	233
11	Low growth resilience to drought is related to future mortality risk in trees. Nature Communications, 2020, 11, 545.	12.8	228
12	LANDSCAPE INFLUENCES ON OCCURRENCE AND SPREAD OF WILDFIRES IN PATAGONIAN FORESTS AND SHRUBLANDS. Ecology, 2005, 86, 2705-2715.	3.2	211
13	EFFECTS OF CLIMATIC VARIABILITY ON FACILITATION OF TREE ESTABLISHMENT IN NORTHERN PATAGONIA. Ecology, 2000, 81, 1914-1924.	3.2	205
14	Cost-effectiveness of dryland forest restoration evaluated by spatial analysis of ecosystem services. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21925-21930.	7.1	199
15	Disturbance and forest dynamics along a transect from Andean rain forest to Patagonian shrubland. Journal of Vegetation Science, 1992, 3, 507-520.	2.2	181
16	Climatic influences on fire regimes along a rain forestâ€toâ€xeric woodland gradient in northern Patagonia, Argentina. Journal of Biogeography, 1997, 24, 35-47.	3.0	175
17	Patterns and drivers of recent disturbances across the temperate forest biome. Nature Communications, 2018, 9, 4355.	12.8	167
18	Inter-hemispheric synchrony of forest fires and the El Niño-Southern Oscillation. Global Ecology and Biogeography, 2001, 10, 315-326.	5.8	150

#	Article	IF	CITATIONS
19	Isozyme variation and recent biogeographical history of the long-lived conifer Fitzroya cupressoides. Journal of Biogeography, 2000, 27, 251-260.	3.0	142
20	Direct and indirect climate controls predict heterogeneous early-mid 21st century wildfire burned area across western and boreal North America. PLoS ONE, 2017, 12, e0188486.	2.5	121
21	Early-Warning Signals of Individual Tree Mortality Based on Annual Radial Growth. Frontiers in Plant Science, 2018, 9, 1964.	3.6	117
22	Influences of fire–vegetation feedbacks and postâ€fire recovery rates on forest landscape vulnerability to altered fire regimes. Journal of Ecology, 2018, 106, 1925-1940.	4.0	114
23	Recruitment patterns following a severe drought: long-term compositional shifts in Patagonian forests. Canadian Journal of Forest Research, 2008, 38, 3002-3010.	1.7	112
24	Ecological Impacts of Introduced Animals in Nahuel Huapi National Park, Argentina. Conservation Biology, 1992, 6, 71-83.	4.7	108
25	Forest and woodland replacement patterns following drought-related mortality. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29720-29729.	7.1	99
26	Fire-induced changes in northern Patagonian landscapes. , 1999, 14, 1-15.		93
27	Fire–vegetation feedbacks and alternative states: common mechanisms of temperate forest vulnerability to fire in southern South America and New Zealand. New Zealand Journal of Botany, 2016, 54, 247-272.	1.1	93
28	The historical range of variability of fires in the Andean - Patagonian Nothofagus forest region. International Journal of Wildland Fire, 2008, 17, 724.	2.4	91
29	Environmental correlates of mammal species richness in South America: effects of spatial structure, taxonomy and geographic range. Ecography, 2004, 27, 401-417.	4.5	89
30	BLOWDOWN HISTORY AND LANDSCAPE PATTERNS IN THE ANDES OF TIERRA DEL FUEGO, ARGENTINA. Ecology, 1997, 78, 678-692.	3.2	88
31	Adapting to global environmental change in Patagonia: What role for disturbance ecology?. Austral Ecology, 2011, 36, 891-903.	1.5	88
32	Decreases in Fire Spread Probability with Forest Age Promotes Alternative Community States, Reduced Resilience to Climate Variability and Large Fire Regime Shifts. Ecosystems, 2012, 15, 97-112.	3.4	87
33	Environmental and genetic control of insect abundance and herbivory along a forest elevational gradient. Oecologia, 2011, 167, 117-129.	2.0	80
34	Differential effects of climate variability on forest dynamics along a precipitation gradient in northern Patagonia. Journal of Ecology, 2010, 98, 1023-1034.	4.0	78
35	Small-scale habitat use and assemblage structure of ground-dwelling beetles in a Patagonian shrub steppe. Journal of Arid Environments, 2006, 67, 177-194.	2.4	77
36	Influences of humans and ENSO on fire history of <i>Austrocedrus chilensis</i> woodlands in northern Patagonia, Argentina. Ecoscience, 1997, 4, 508-520.	1.4	71

#	Article	IF	CITATIONS
37	Regeneration mode affects spatial genetic structure of Nothofagus dombeyi forests. Molecular Ecology, 2005, 14, 2319-2329.	3.9	62
38	Latitudinal decrease in folivory within <i>Nothofagus pumilio</i> forests: dual effect of climate on insect density and leaf traits?. Clobal Ecology and Biogeography, 2011, 20, 609-619.	5.8	60
39	Fire History and Vegetation Changes in Northern Patagonia, Argentina. , 2003, , 265-295.		59
40	Effects of fire severity in a north Patagonian subalpine forest. Journal of Vegetation Science, 2005, 16, 5-12.	2.2	59
41	Southern-most Nothofagus trees enduring ice ages: Genetic evidence and ecological niche retrodiction reveal high latitude (54°S) glacial refugia. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 298, 247-256.	2.3	59
42	Southern Annular Mode drives multicentury wildfire activity in southern South America. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9552-9557.	7.1	59
43	Tectonic influences on tree growth in northern Patagonia, Argentina: the roles of substrate stability and climatic variation. Canadian Journal of Forest Research, 1995, 25, 1684-1696.	1.7	57
44	Effects of position, understorey vegetation and coarse woody debris on tree regeneration in two environmentally contrasting forests of north-western Patagonia: a manipulative approach. Journal of Biogeography, 2006, 33, 1357-1367.	3.0	57
45	Direct and indirect effects of understorey bamboo shape tree regeneration niches in a mixed temperate forest. Oecologia, 2009, 161, 771-780.	2.0	57
46	Ecosystem dynamics and management after forest dieâ€off: a global synthesis with conceptual stateâ€andâ€transition models. Ecosphere, 2017, 8, e02034.	2.2	56
47	A field experiment on climatic and herbivore impacts on post-fire tree regeneration in north-western Patagonia. Journal of Ecology, 2007, 95, 771-779.	4.0	53
48	Factors controlling seed predation by rodents and non-native Sus scrofa in Araucaria araucana forests: potential effects on seedling establishment. Biological Invasions, 2010, 12, 689-706.	2.4	53
49	Influences of gap microheterogeneity on the regeneration of <i>Nothofagus pumilio</i> in a xeric old-growth forest of northwestern Patagonia, Argentina. Canadian Journal of Forest Research, 2000, 30, 25-31.	1.7	51
50	Trophic and non-trophic pathways mediate apparent competition through post-dispersal seed predation in a Patagonian mixed forest. Oikos, 2006, 113, 469-480.	2.7	49
51	Patterns and mechanisms of masting in the largeâ€seeded southern hemisphere conifer <i>Araucaria araucana</i> . Austral Ecology, 2008, 33, 78-87.	1.5	49
52	Fire history in the Araucaria araucana forests of Argentina: human and climate influences. International Journal of Wildland Fire, 2013, 22, 194.	2.4	48
53	Changes in vegetation structure and fuel characteristics along postâ€fire succession promote alternative stable states and positive fire–vegetation feedbacks. Journal of Vegetation Science, 2018, 29, 147-156.	2.2	48
54	Historical and eventâ€based bioclimatic suitability predicts regional forest vulnerability to compound effects of severe drought and bark beetle infestation. Global Change Biology, 2018, 24, 1952-1964.	9.5	48

#	Article	IF	CITATIONS
55	Ecological and climatic controls of modern wildfire activity patterns across southwestern South America. Ecosphere, 2012, 3, 1-25.	2.2	47
56	Interannual changes in folivory and bird insectivory along a natural productivity gradient in northern Patagonian forests. Ecography, 2004, 27, 29-40.	4.5	46
57	Araucaria araucana tree-ring chronologies in Argentina: spatial growth variations and climate influences. Trees - Structure and Function, 2012, 26, 443-458.	1.9	46
58	Effects of introduced ungulates on forest understory communities in northern Patagonia are modified by timing and severity of stand mortality. Plant Ecology, 2009, 201, 11-22.	1.6	44
59	Effects of biological legacies and herbivory on fuels and flammability traits: A longâ€ŧerm experimental study of alternative stable states. Journal of Ecology, 2017, 105, 1309-1322.	4.0	44
60	INDIRECT EFFECTS OF PREY SWAMPING: DIFFERENTIAL SEED PREDATION DURING A BAMBOO MASTING EVENT. Ecology, 2007, 88, 2541-2554.	3.2	43
61	Crown dieback events as key processes creating cavity habitat for magellanic woodpeckers. Austral Ecology, 2007, 32, 436-445.	1.5	42
62	Sex-related spatial segregation and growth in a dioecious conifer along environmental gradients in northwestern Patagonia. Ecoscience, 2008, 15, 73-80.	1.4	40
63	Pine Plantations and Invasion Alter Fuel Structure and Potential Fire Behavior in a Patagonian Forest-Steppe Ecotone. Forests, 2018, 9, 117.	2.1	40
64	Facilitation vs. apparent competition: insect herbivory alters tree seedling recruitment under nurse shrubs in a steppe–woodland ecotone. Journal of Ecology, 2010, 98, 488-497.	4.0	39
65	Title is missing!. Plant Ecology, 2002, 163, 187-207.	1.6	38
66	Influences of gap microheterogeneity on the regeneration of <i>Nothofagus pumilio</i> in a xeric old-growth forest of northwestern Patagonia, Argentina. Canadian Journal of Forest Research, 2000, 30, 25-31.	1.7	37
67	Environmental drivers and spatial dependency in wildfire ignition patterns of northwestern Patagonia. Journal of Environmental Management, 2013, 123, 77-87.	7.8	36
68	Ecotones as Complex Arenas of Disturbance, Climate, and Human Impacts: The Trans-Andean Forest-Steppe Ecotone of Northern Patagonia. , 2012, , 59-88.		35
69	Landscape responses to a century of land use along the northern Patagonian forest-steppe transition. Plant Ecology, 2012, 213, 259-272.	1.6	35
70	Seasonal patterns of herbivory, leaf traits and productivity consumption in dry and wet Patagonian forests. Ecological Entomology, 2012, 37, 193-203.	2.2	33
71	Habitat distribution modeling reveals vegetation flammability and land use as drivers of wildfire in SW Patagonia. Ecosphere, 2013, 4, 1-20.	2.2	33
72	ENSO as a forewarning tool of regional fire occurrence in northern Patagonia, Argentina. International Journal of Wildland Fire, 2002, 11, 33.	2.4	32

#	Article	IF	CITATIONS
73	Assessing dendroecological methods to reconstruct defoliator outbreaks on <i>Nothofagus pumilio</i> in northwestern Patagonia, Argentina. Canadian Journal of Forest Research, 2009, 39, 1617-1629.	1.7	32
74	Increased fire severity triggers positive feedbacks of greater vegetation flammability and favors plant communityâ€ŧype conversions. Journal of Vegetation Science, 2021, 32, .	2.2	29
75	Fire history in southern Patagonia: human and climate influences on fire activity in <i>Nothofagus pumilio</i> forests. Ecosphere, 2017, 8, e01932.	2.2	28
76	Variable community responses to herbivory in fire-altered landscapes of northern Patagonia, Argentina. African Journal of Range and Forage Science, 2005, 22, 85-91.	1.4	23
77	Abiotic factors related to the incidence of the Austrocedrus chilensis disease syndrome at a landscape scale. Forest Ecology and Management, 2008, 256, 1087-1095.	3.2	23
78	Nutrient supply and bird predation additively control insect herbivory and tree growth in two contrasting forest habitats. Oikos, 2010, 119, 337-349.	2.7	23
79	Patterns of use and damage by exotic deer on native plant communities in northwestern Patagonia. European Journal of Wildlife Research, 2012, 58, 137-146.	1.4	23
80	How do coldâ€sensitive species endure ice ages? Phylogeographic and paleodistribution models of postglacial range expansion of the mesothermic droughtâ€tolerant conifer <i><scp>A</scp>ustrocedrus chilensis</i> . New Phytologist, 2015, 208, 960-972.	7.3	23
81	Survival, growth and vulnerability to drought in fire refuges: implications for the persistence of a fire-sensitive conifer in northern Patagonia. Oecologia, 2015, 179, 1111-1122.	2.0	23
82	High Nothofagus flower consumption and pollen emptying in the southern South American austral parakeet (Enicognathus ferrugineus). Austral Ecology, 2006, 31, 759-766.	1.5	22
83	A stochastic fire spread model for north Patagonia based on fire occurrence maps. Ecological Modelling, 2015, 300, 73-80.	2.5	22
84	Non-additive effects of alternative stable states on landscape flammability in NW Patagonia: fire history and simulation modelling evidence. International Journal of Wildland Fire, 2019, 28, 149.	2.4	22
85	Interactive effects of introduced herbivores and post-flowering die-off of bamboos in Patagonian Nothofagus forests. Journal of Vegetation Science, 2007, 18, 371.	2.2	22
86	Influences of Climate on Fire in Northern Patagonia, Argentina. , 2003, , 296-321.		21
87	Efectos de la producción de semillas y la heterogeneidad vegetal sobre la supervivencia de semillas y el patrón espacio-temporal de establecimiento de plántulas en Araucaria araucana. Revista Chilena De Historia Natural, 2009, 82, .	1.2	21
88	Limits to reproduction and seed size-number trade-offs that shape forest dominance and future recovery. Nature Communications, 2022, 13, 2381.	12.8	21
89	Projections of fire probability and ecosystem vulnerability under 21st century climate across a trans-Andean productivity gradient in Patagonia. Science of the Total Environment, 2022, 839, 156303.	8.0	21
90	Interactive effects of introduced herbivores and postâ€flowering dieâ€off of bamboos in Patagonian Nothofagus forests. Journal of Vegetation Science, 2007, 18, 371-378.	2.2	20

#	Article	IF	CITATIONS
91	Biogeographical Consequences of Recent Climate Changes in the Southern Andes of Argentina. Advances in Global Change Research, 2005, , 157-166.	1.6	19
92	Food resources and reproductive output of the Austral Parakeet (Enicognathus ferrugineus) in forests of northern Patagonia. Emu, 2012, 112, 234-243.	0.6	19
93	Episodic bamboo dieâ€off, neighbourhood interactions and tree seedling performance in a <scp>P</scp> atagonian mixed forest. Journal of Ecology, 2015, 103, 231-242.	4.0	17
94	Growth and climatic response of male and female trees of <i>Austrocedrus chilensis</i> , a dioecious conifer from the temperate forests of southern South America. Ecoscience, 2003, 10, 195-203.	1.4	16
95	Fire History in Northern Patagonia: The Roles of Humans and Climatic Variation. Ecological Monographs, 1999, 69, 47.	5.4	16
96	Establishment and life history characteristics of the southern South American mistletoe Misodendrum punctulatum (Misodendraceae). Revista Chilena De Historia Natural, 2004, 77, 509.	1.2	14
97	Variable strength of topâ€down effects in <i>Nothofagus</i> forests: bird predation and insect herbivory during an ENSO event. Austral Ecology, 2009, 34, 359-367.	1.5	14
98	Modelling Phytophthora disease risk in Austrocedrus chilensis forests of Patagonia. European Journal of Forest Research, 2012, 131, 323-337.	2.5	14
99	Nest habitat selection by the Austral parakeet in northâ€western Patagonia. Austral Ecology, 2013, 38, 268-278.	1.5	14
100	Temporal shifts in the interaction between woody resprouters and an obligate seeder tree during a postâ€fire succession in Patagonia. Journal of Vegetation Science, 2016, 27, 1198-1208.	2.2	14
101	Genetic Diversity and Structure in <i>Austrocedrus chilensis</i> Populations: Implications for Dryland Forest Restoration. Restoration Ecology, 2012, 20, 568-575.	2.9	11
102	Impact of Extreme and Infrequent Events on Terrestrial Ecosystems and Biodiversity. , 2013, , 209-223.		11
103	Regional climate oscillations and local topography shape genetic polymorphisms and distribution of the giant columnar cactus <i>Echinopsis terscheckii</i> in drylands of the tropical Andes. Journal of Biogeography, 2018, 45, 116-126.	3.0	11
104	Gap formation and dieback in Fuego-Patagonian Nothofagus forests. Phytocoenologia, 1993, 23, 581-599.	0.5	11
105	Multi-centennial phase-locking between reproduction of a South American conifer and large-scale drivers of climate. Nature Plants, 2021, 7, 1560-1570.	9.3	11
106	Globally, tree fecundity exceeds productivity gradients. Ecology Letters, 2022, 25, 1471-1482.	6.4	11
107	Impact of introduced herbivores on understory vegetation along a regional moisture gradient in Patagonian beech forests. Forest Ecology and Management, 2016, 366, 11-22.	3.2	10
108	Mortality of the outbreak defoliator Ormiscodes amphimone (Lepidoptera: Saturniidae) caused by natural enemies in northwestern Patagonia, Argentina. Revista Chilena De Historia Natural, 2012, 85, 113-122.	1.2	10

#	Article	IF	CITATIONS
109	Distribución y estado de conservación del alerce (Fitzroya cupressoides (Mol.) Johnst.) en Argentina. Bosque, 2000, 21, 79-89.	0.3	10
110	Effects of Climatic Variability on Facilitation of Tree Establishment in Northern Patagonia. Ecology, 2000, 81, 1914.	3.2	9
111	Relative size to resprouters determines post-fire recruitment of non-serotinous pines. Forest Ecology and Management, 2018, 429, 300-307.	3.2	8
112	Niche squeeze induced by climate change of the cold-tolerant subtropical montane Podocarpus parlatorei. Royal Society Open Science, 2018, 5, 180513.	2.4	6
113	Anthropogenic Factors Control the Distribution of a Southern Conifer Phytophthora Disease in a Peri-Urban Area of Northern Patagonia, Argentina. Forests, 2020, 11, 1183.	2.1	6
114	Invasive ectomycorrhizal fungi can disperse in the absence of their known vectors. Fungal Ecology, 2022, 55, 101124.	1.6	6
115	Tree size and crown structure explain the presence of cavities required by wildlife in cool-temperate forests of South America. Forest Ecology and Management, 2021, 494, 119295.	3.2	5
116	Effects of fire severity in a north Patagonian subalpine forest. Journal of Vegetation Science, 2005, 16, 5.	2.2	5
117	Rejecting Editorial Rejections Revisited: Are Editors of Ecological Journals Good Oracles?. Bulletin of the Ecological Society of America, 2014, 95, 238-242.	0.2	4
118	Fragmentation modulates the response of dichotomous landscapes to fire and seed dispersal. Ecological Modelling, 2019, 392, 22-30.	2.5	4
119	Chronic insect herbivores accelerate litter decomposition and nutrient recycling rates along an environmental/herbivory gradient in northern Patagonia. Forest Ecology and Management, 2021, 479, 118534.	3.2	4
120	Ecological niche modeling meets phylogeography to unravel hidden past history of key forest genera in plant geography: Podocarpus and Nothofagus. Natureza A Conservacao, 2012, 10, 160-168.	2.5	3
121	Are digestibility and flammability related? Two variables shaping landscape dynamics of Northwestern Patagonian forests. Forest Ecology and Management, 2022, 503, 119810.	3.2	1
122	Effects of introduced ungulates on forest understory communities in northern Patagonia are modified by timing and severity of stand mortality. , 2008, , 11-22.		0
123	Impact of Extreme Events on Terrestrial Ecosystems and Biodiversity. , 2024, , 943-961.		0