
Scott E Nielsen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7063061/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evaluating resource selection functions. Ecological Modelling, 2002, 157, 281-300.	1.2	1,896
2	Application of random effects to the study of resource selection by animals. Journal of Animal Ecology, 2006, 75, 887-898.	1.3	615
3	Resource Selection Functions Based on Use–Availability Data: Theoretical Motivation and Evaluation Methods. Journal of Wildlife Management, 2006, 70, 347-357.	0.7	593
4	Removing GPS collar bias in habitat selection studies. Journal of Applied Ecology, 2004, 41, 201-212.	1.9	273
5	SEASONAL AND DIEL PATTERNS OF GRIZZLY BEAR DIET AND ACTIVITY IN WEST-CENTRAL ALBERTA. Journal of Mammalogy, 2006, 87, 1112-1121.	0.6	224
6	A habitat-based framework for grizzly bear conservation in Alberta. Biological Conservation, 2006, 130, 217-229.	1.9	191
7	Modelling the spatial distribution of human-caused grizzly bear mortalities in the Central Rockies ecosystem of Canada. Biological Conservation, 2004, 120, 101-113.	1.9	179
8	Can models of presence-absence be used to scale abundance? Two case studies considering extremes in life history. Ecography, 2005, 28, 197-208.	2.1	176
9	Velocity of climate change algorithms for guiding conservation and management. Clobal Change Biology, 2015, 21, 997-1004.	4.2	160
10	Dynamic wildlife habitat models: Seasonal foods and mortality risk predict occupancy-abundance and habitat selection in grizzly bears. Biological Conservation, 2010, 143, 1623-1634.	1.9	152
11	Grizzly bears and forestry. Forest Ecology and Management, 2004, 199, 51-65.	1.4	143
12	Grizzly bears and forestry. Forest Ecology and Management, 2004, 199, 67-82.	1.4	141
13	Accounting for spatially biased sampling effort in presenceâ€only species distribution modelling. Diversity and Distributions, 2015, 21, 595-608.	1.9	131
14	Rangeâ€wide patterns of greater sageâ€grouse persistence. Diversity and Distributions, 2008, 14, 983-994.	1.9	129
15	Development and testing of phenologically driven grizzly bear habitat models. Ecoscience, 2003, 10, 1-10.	0.6	125
16	Natural regeneration of forest vegetation on legacy seismic lines in boreal habitats in Alberta's oil sands region. Biological Conservation, 2015, 184, 127-135.	1.9	110
17	Wildfireâ€mediated vegetation change in boreal forests of Alberta, Canada. Ecosphere, 2018, 9, e02156.	1.0	104
18	The ecology of human–carnivore coexistence. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17876-17883.	3.3	103

#	Article	IF	CITATIONS
19	Regional mapping of vegetation structure for biodiversity monitoring using airborne lidar data. Ecological Informatics, 2017, 38, 50-61.	2.3	102
20	Scaleâ€dependent complementarity of climatic velocity and environmental diversity for identifying priority areas for conservation under climate change. Global Change Biology, 2017, 23, 4508-4520.	4.2	98
21	Forbidden fruit: human settlement and abundant fruit create an ecological trap for an apex omnivore. Journal of Animal Ecology, 2017, 86, 55-65.	1.3	98
22	Macronutrient Optimization and Seasonal Diet Mixing in a Large Omnivore, the Grizzly Bear: A Geometric Analysis. PLoS ONE, 2014, 9, e97968.	1.1	96
23	REVIEW: Can habitat selection predict abundance?. Journal of Animal Ecology, 2016, 85, 11-20.	1.3	94
24	Grizzly bear connectivity mapping in the Canada–United States transâ€border region. Journal of Wildlife Management, 2015, 79, 544-558.	0.7	92
25	Climateâ€change refugia in boreal North America: what, where, and for how long?. Frontiers in Ecology and the Environment, 2020, 18, 261-270.	1.9	91
26	Effects of habitat quality and access management on the density of a recovering grizzly bear population. Journal of Applied Ecology, 2018, 55, 1406-1417.	1.9	81
27	Extinction risk of North American seed plants elevated by climate and landâ€use change. Journal of Applied Ecology, 2017, 54, 303-312.	1.9	79
28	Examining forest resilience to changing fire frequency in a fireâ€prone region of boreal forest. Global Change Biology, 2019, 25, 869-884.	4.2	79
29	Quantifying grizzly bear selection of natural and anthropogenic edges. Journal of Wildlife Management, 2013, 77, 957-964.	0.7	77
30	Assessing Nutritional Parameters of Brown Bear Diets among Ecosystems Gives Insight into Differences among Populations. PLoS ONE, 2015, 10, e0128088.	1.1	69
31	Developing a population target for an overabundant ungulate for ecosystem restoration. Journal of Applied Ecology, 2011, 48, 935-942.	1.9	67
32	Complementary food resources of carnivory and frugivory affect local abundance of an omnivorous carnivore. Oikos, 2017, 126, 369-380.	1.2	66
33	Den selection by grizzly bears on a managed landscape. Journal of Mammalogy, 2014, 95, 559-571.	0.6	63
34	A forest structure habitat index based on airborne laser scanning data. Ecological Indicators, 2016, 67, 346-357.	2.6	63
35	Grizzly bear response to spatioâ€ŧemporal variability in human recreational activity. Journal of Applied Ecology, 2019, 56, 375-386.	1.9	63
36	Toward a climateâ€informed North American protected areas network: Incorporating climateâ€change refugia and corridors in conservation planning. Conservation Letters, 2020, 13, e12712.	2.8	62

#	Article	IF	CITATIONS
37	Regional and historical factors supplement current climate in shaping global forest canopy height. Journal of Ecology, 2016, 104, 469-478.	1.9	55
38	Can natural disturbance-based forestry rescue a declining population of grizzly bears?. Biological Conservation, 2008, 141, 2193-2207.	1.9	54
39	Energetics of hibernation and reproductive trade-offs in brown bears. Ecological Modelling, 2013, 270, 1-10.	1.2	53
40	Assessing the effectiveness of China's protected areas to conserve current and future amphibian diversity. Diversity and Distributions, 2017, 23, 146-157.	1.9	53
41	Using digital time-lapse cameras to monitor species-specific understorey and overstorey phenology in support of wildlife habitat assessment. Environmental Monitoring and Assessment, 2011, 180, 1-13.	1.3	52
42	Capacity of large-scale, long-term biodiversity monitoring programmes to detect trends in species prevalence. Biodiversity and Conservation, 2009, 18, 2961-2978.	1.2	49
43	Linking ground-based to satellite-derived phenological metrics in support of habitat assessment. Remote Sensing Letters, 2012, 3, 191-200.	0.6	49
44	A new method to estimate species and biodiversity intactness using empirically derived reference conditions. Biological Conservation, 2007, 137, 403-414.	1.9	47
45	Density-dependent signaling: An alternative hypothesis on the function of chemical signaling in a non-territorial solitary carnivore. PLoS ONE, 2017, 12, e0184176.	1.1	47
46	Use of Unmanned Aerial Vehicles for Monitoring Recovery of Forest Vegetation on Petroleum Well Sites. Remote Sensing, 2017, 9, 413.	1.8	43
47	Macrorefugia for North American trees and songbirds: Climatic limiting factors and multiâ€scale topographic influences. Global Ecology and Biogeography, 2018, 27, 690-703.	2.7	43
48	Does Learning or Instinct Shape Habitat Selection?. PLoS ONE, 2013, 8, e53721.	1.1	39
49	Caribou Conservation: Restoring Trees on Seismic Lines in Alberta, Canada. Forests, 2019, 10, 185.	0.9	39
50	Gains and losses of plant species and phylogenetic diversity for a northern highâ€latitude region. Diversity and Distributions, 2015, 21, 1441-1454.	1.9	36
51	Idiosyncratic responses of grizzly bear habitat to climate change based on projected food resource changes. Ecological Applications, 2014, 24, 1144-1154.	1.8	34
52	Negative relationships between species richness and evenness render common diversity indices inadequate for assessing long-term trends in butterfly diversity. Biodiversity and Conservation, 2017, 26, 617-629.	1.2	32
53	Fire and forest recovery on seismic lines in sandy upland jack pine (Pinus banksiana) forests. Forest Ecology and Management, 2018, 421, 32-39.	1.4	32
54	Localized disturbances from oil sands developments increase butterfly diversity and abundance in Alberta's boreal forests. Biological Conservation, 2018, 217, 173-180.	1.9	32

#	Article	IF	CITATIONS
55	Decoupling habitat fragmentation from habitat loss: butterfly species mobility obscures fragmentation effects in a naturally fragmented landscape of lake islands. Oecologia, 2018, 186, 11-27.	0.9	32
56	Impact of disturbance characteristics and age on grizzly bear habitat selection. Applied Geography, 2012, 34, 614-625.	1.7	31
57	Use of multiâ€state models to explore relationships between changes in body condition, habitat and survival of grizzly bears <i>Ursus arctos horribilis</i> . Wildlife Biology, 2013, 19, 274-288.	0.6	30
58	Effects of Lakes on Wildfire Activity in the Boreal Forests of Saskatchewan, Canada. Forests, 2016, 7, 265.	0.9	30
59	Advances in phenology are conserved across scale in present and future climates. Nature Climate Change, 2019, 9, 419-425.	8.1	29
60	Seismic Line Disturbance Alters Soil Physical and Chemical Properties Across Boreal Forest and Peatland Soils. Frontiers in Earth Science, 2020, 8, .	0.8	29
61	High Precision Altimeter Demonstrates Simplification and Depression of Microtopography on Seismic Lines in Treed Peatlands. Forests, 2019, 10, 295.	0.9	28
62	Spatial and Temporal Heterogeneity Creates a " <i>Brown Tide</i> ―in Root Phenology and Nutrition. ISRN Ecology, 2012, 2012, 1-10.	1.0	28
63	Restoration of Midwest Oak Barrens: Structural Manipulation or Process-only?. Ecology and Society, 2003, 7, .	0.9	28
64	Functional macronutritional generalism in a large omnivore, the brown bear. Ecology and Evolution, 2018, 8, 2365-2376.	0.8	27
65	Narrow anthropogenic corridors direct the movement of a generalist boreal butterfly. Biology Letters, 2018, 14, .	1.0	27
66	Using spatial mark-recapture for conservation monitoring of grizzly bear populations in Alberta. Scientific Reports, 2018, 8, 5204.	1.6	27
67	Effects of Narrow Linear Disturbances on Light and Wind Patterns in Fragmented Boreal Forests in Northeastern Alberta. Forests, 2018, 9, 486.	0.9	27
68	Sampling Plant Diversity and Rarity at Landscape Scales: Importance of Sampling Time in Species Detectability. PLoS ONE, 2014, 9, e95334.	1.1	27
69	Integrating optical satellite data and airborne laser scanning in habitat classification for wildlife management. International Journal of Applied Earth Observation and Geoinformation, 2015, 38, 242-250.	1.4	26
70	Assessing the vulnerability of rare plants using climate change velocity, habitat connectivity, and dispersal ability: a case study in Alberta, Canada. Regional Environmental Change, 2016, 16, 1433-1441.	1.4	26
71	Wildlife mortality on roads and railways following highway mitigation. Ecosphere, 2019, 10, e02597.	1.0	26
72	Space-use, movement and dispersal of sub-adult cougars in a geographically isolated population. PeerJ, 2015, 3, e1118.	0.9	25

#	Article	IF	CITATIONS
73	Remote sensing proxies of productivity and moisture predict forest stand type and recovery rate following experimental harvest. Forest Ecology and Management, 2015, 357, 239-247.	1.4	25
74	Trophic interactions among vertebrate guilds and plants shape global patterns in species diversity. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180949.	1.2	25
75	Accelerated seed dispersal along linear disturbances in the Canadian oil sands region. Scientific Reports, 2018, 8, 4828.	1.6	24
76	Composite Effects of Cutlines and Wildfire Result in Fire Refuges for Plants and Butterflies in Boreal Treed Peatlands. Ecosystems, 2020, 23, 485-497.	1.6	24
77	Does Sex Matter? Temporal and Spatial Patterns of Cougar-Human Conflict in British Columbia. PLoS ONE, 2013, 8, e74663.	1.1	23
78	Fine-spatial scale predictions of understory species using climate- and LiDAR-derived terrain and canopy metrics. Journal of Applied Remote Sensing, 2014, 8, 083572.	0.6	23
79	The theory of island biogeography, the sampleâ€area effect, and the habitat diversity hypothesis: complementarity in a naturally fragmented landscape of lake islands. Journal of Biogeography, 2018, 45, 2730-2743.	1.4	23
80	†Bear are only the Lightning Rod': Ongoing Acrimony in Alberta's Grizzly Bear Recovery. Society and Natural Resources, 2019, 32, 34-52.	0.9	23
81	Vegetation phenology can be captured with digital repeat photography and linked to variability of root nutrition in <i><scp>H</scp>edysarum alpinum</i> . Applied Vegetation Science, 2013, 16, 317-324.	0.9	22
82	A railway increases the abundance and accelerates the phenology of bearâ€attracting plants in a forested, mountain park. Ecosphere, 2017, 8, e01985.	1.0	22
83	Integrating airborne lidar and satellite imagery to model habitat connectivity dynamics for spatial conservation prioritization. Landscape Ecology, 2018, 33, 491-511.	1.9	22
84	Seasonal Variation in Habitat Selection by Free-Ranging Feral Horses Within Alberta's Forest Reserve. Rangeland Ecology and Management, 2013, 66, 428-437.	1.1	21
85	Comparing patterns in forest stand structure following variable harvests using airborne laser scanning data. Forest Ecology and Management, 2015, 354, 272-280.	1.4	21
86	Combining aggregated and dispersed tree retention harvesting for conservation of vascular plant communities. Ecological Applications, 2018, 28, 1830-1840.	1.8	21
87	Habitat selection of a re-colonized cougar population in response to seasonal fluctuations of human activity. Journal of Wildlife Management, 2014, 78, 1394-1403.	0.7	20
88	Effects of Linear Disturbances and Fire Severity on Velvet Leaf Blueberry Abundance, Vigor, and Berry Production in Recently Burned Jack Pine Forests. Forests, 2017, 8, 398.	0.9	20
89	Using airborne laser scanning to predict plant species richness and assess conservation threats in the oil sands region of Alberta's boreal forest. Forest Ecology and Management, 2018, 409, 29-37.	1.4	20
90	Trophic cascades: linking ungulates to shrubâ€dependent birds and butterflies. Journal of Animal Ecology, 2013, 82, 1288-1299.	1.3	19

#	Article	IF	CITATIONS
91	Predicting mule deer recruitment from climate oscillations for harvest management on the northern Great Plains. Journal of Wildlife Management, 2015, 79, 1226-1238.	0.7	19
92	Gene flow and climateâ€associated genetic variation in a vagile habitat specialist. Molecular Ecology, 2020, 29, 3889-3906.	2.0	19
93	Environmental, biological and anthropogenic effects on grizzly bear body size: temporal and spatial considerations. BMC Ecology, 2013, 13, 31.	3.0	18
94	Quantifying spatial–temporal patterns in wildlife ranges using STAMP: A grizzly bear example. Applied Geography, 2012, 35, 124-131.	1.7	17
95	Airborne laser scanning for modelling understory shrub abundance and productivity. Forest Ecology and Management, 2016, 377, 46-54.	1.4	17
96	Boreal ground-beetle (Coleoptera: Carabidae) assemblages of the mainland and islands in Lac la Ronge, Saskatchewan, Canada. Canadian Entomologist, 2017, 149, 491-503.	0.4	17
97	Modelling Lichen Abundance for Woodland Caribou in a Fire-Driven Boreal Landscape. Forests, 2019, 10, 962.	0.9	17
98	Experimental test of assisted migration for conservation of locally range-restricted plants in Alberta, Canada. Global Ecology and Conservation, 2019, 17, e00572.	1.0	17
99	Tree regeneration on industrial linear disturbances in treed peatlands is hastened by wildfire and delayed by loss of microtopography. Canadian Journal of Forest Research, 2020, 50, 936-945.	0.8	17
100	DESIGN AND INSTALLATION OF A CAMERA NETWORK ACROSS AN ELEVATION GRADIENT FOR HABITAT ASSESSMENT. Instrumentation Science and Technology, 2011, 39, 231-247.	0.9	16
101	Landscape-Scale Factors Affecting Feral Horse Habitat Use During Summer Within The Rocky Mountain Foothills. Environmental Management, 2013, 51, 435-447.	1.2	15
102	Survival and growth of residual trees in a variable retention harvest experiment in a boreal mixedwood forest. Forest Ecology and Management, 2018, 411, 187-194.	1.4	15
103	Do remnant retention patches and forest edges increase grizzly bear food supply?. Forest Ecology and Management, 2019, 433, 741-761.	1.4	15
104	Using Risk Assessment and Habitat Suitability Models to Prioritise Invasive Species for Management in a Changing Climate. PLoS ONE, 2016, 11, e0165292.	1.1	15
105	A spatially explicit method for evaluating accuracy of species distribution models. Diversity and Distributions, 2010, 16, 996-1008.	1.9	14
106	In the trap: detectability of fixed hair trap DNA methods in grizzly bear population monitoring. Wildlife Biology, 2015, 21, 68-79.	0.6	14
107	Wildlife habitat selection on landscapes with industrial disturbance. Environmental Conservation, 2016, 43, 327-336.	0.7	14
108	Seismic line width and orientation influence microclimatic forest edge gradients and tree regeneration. Forest Ecology and Management, 2021, 492, 119216.	1.4	14

#	Article	IF	CITATIONS
109	Grizzly bear selection of recently harvested forests is dependent on forest recovery rate and landscape composition. Forest Ecology and Management, 2019, 449, 117459.	1.4	13
110	A functional perspective on the analysis of land use and land cover data in ecology. Ambio, 2021, 50, 1089-1100.	2.8	13
111	Linking genotype, ecotype, and phenotype in an intensively managed large carnivore. Evolutionary Applications, 2014, 7, 301-312.	1.5	12
112	Spatial Heterogeneity of the Forest Canopy Scales with the Heterogeneity of an Understory Shrub Based on Fractal Analysis. Forests, 2017, 8, 146.	0.9	12
113	Disturbing to restore? Effects of mounding on understory communities on seismic lines in treed peatlands. Canadian Journal of Forest Research, 2020, 50, 1340-1351.	0.8	12
114	Prioritizing Sites for Protection and Restoration for Grizzly Bears (Ursus arctos) in Southwestern Alberta, Canada. PLoS ONE, 2015, 10, e0132501.	1.1	12
115	Large carnivore habitat suitability modelling for Romania and associated predictions for protected areas. PeerJ, 2019, 7, e6549.	0.9	12
116	Distribution of Cranberry Blue Butterflies (Agriades optilete) and Their Responses to Forest Disturbance from In Situ Oil Sands and Wildfires. Diversity, 2018, 10, 112.	0.7	11
117	Scales of selection and perception: landscape heterogeneity of an important food resource influences habitat use by a large omnivore. Wildlife Biology, 2018, 2018, 1-10.	0.6	11
118	Perceptual Range, Targeting Ability, and Visual Habitat Detection by Greater Fritillary Butterflies Speyeria cybele (Lepidoptera: Nymphalidae) and Speyeria atlantis. Journal of Insect Science, 2019, 19, .	0.6	11
119	Six key steps for functional landscape analyses of habitat change. Landscape Ecology, 2020, 35, 1495-1504.	1.9	11
120	From human invaders to problem bears: A media content analysis of grizzly bear conservation. Conservation Science and Practice, 2020, 2, e176.	0.9	11
121	Species traits modify the species-area relationship in ground-beetle (Coleoptera: Carabidae) assemblages on islands in a boreal lake. PLoS ONE, 2017, 12, e0190174.	1.1	11
122	Problem Perspectives and Grizzly Bears: A Case Study of Alberta's Grizzly Bear Recovery Policy. Frontiers in Ecology and Evolution, 2020, 8, .	1.1	10
123	Understory vascular plant responses to retention harvesting with and without prescribed fire. Canadian Journal of Forest Research, 2019, 49, 1087-1100.	0.8	9
124	Harvested forests as a surrogate to wildfires in relation to grizzly bear food-supply in west-central Alberta. Forest Ecology and Management, 2020, 456, 117685.	1.4	9
125	Variations in grizzly bear habitat selection in relation to the daily and seasonal availability of annual plant-food resources. Ecological Informatics, 2020, 58, 101116.	2.3	9
126	Latitudinal and seasonal plasticity in American bison Bison bison diets. Mammal Review, 2021, 51, 193-206.	2.2	9

#	Article	IF	CITATIONS
127	Narrow anthropogenic linear corridors increase the abundance, diversity, and movement of bees in boreal forests. Forest Ecology and Management, 2021, 489, 119044.	1.4	9
128	Towards grizzly bear population recovery in a modern landscape. Journal of Applied Ecology, 2019, 56, 93-99.	1.9	8
129	Determining the influence of snow and temperature on the movement rates of wood bison (<i>Bison) Tj ETQq1</i>	1 0,78431 0.4	4 rgBT /Overl
130	Comparison of pre-fire and post-fire space use reveals varied responses by woodland caribou (<i>Rangifer tarandus caribou</i>) in the Boreal Shield. Canadian Journal of Zoology, 2020, 98, 751-760.	0.4	8
131	Demographic effects on fruit set in the dioecious shrub Canada buffaloberry (<i>Shepherdia) Tj ETQq1 1 0.7843</i>	I4 rgBT /O	verlock 10 Tf
132	Topographic and vegetation drivers of thermal heterogeneity along the boreal–grassland transition zone in western Canada: Implications for climate change refugia. Ecology and Evolution, 2022, 12, .	0.8	8
133	Development and application of an antibody-based protein microarray to assess physiological stress in grizzly bears (Ursus arctos). , 2016, 4, cow001.		7
134	Trembling aspen root suckering and stump sprouting response to above ground disturbance on a reclaimed boreal oil sands site in Alberta, Canada. New Forests, 2019, 50, 771-784.	0.7	7
135	Environmental landscape determinants of maximum forest canopy height of boreal forests. Journal of Plant Ecology, 2019, 12, 96-102.	1.2	7
136	Predicting Occurrence, Abundance, and Fruiting of a Cultural Keystone Species to Inform Landscape Values and Priority Sites for Habitat Enhancements. Forests, 2020, 11, 783.	0.9	7
137	Evaluating trade-offs between forage, biting flies, and footing on habitat selection by wood bison (<i>Bison bison athabascae</i>). Canadian Journal of Zoology, 2020, 98, 254-261.	0.4	7
138	Effects of linear features on resource selection and movement rates of wood bison (<i>Bison bison) Tj ETQq0 0 C</i>) rgBT /Ονα 0.4	erlock 10 Tf 5
139	Persistent impact of conventional seismic lines on boreal vegetation structure following wildfire. Canadian Journal of Forest Research, 0, , .	0.8	7
140	Characterizing a Decade of Disturbance Events Using Landsat and MODIS Satellite Imagery in Western Alberta, Canada for Grizzly Bear Management. Canadian Journal of Remote Sensing, 2014, 40, 336-347.	1.1	6
141	Spatiotemporal railway use by grizzly bears in Canada's Rocky Mountains. Journal of Wildlife Management, 2019, 83, 1787-1799.	0.7	6
142	Environmental effects on gene flow in a species complex of vagile, hilltopping butterflies. Biological Journal of the Linnean Society, 2019, 127, 417-428.	0.7	6
143	Avian Response to Wildfire Severity in a Northern Boreal Region. Forests, 2020, 11, 1330.	0.9	6
144	Neighboring edges: Interacting edge effects from linear disturbances in treed fens. Applied Vegetation Science, 2022, 25, .	0.9	6

#	Article	IF	CITATIONS
145	Estimating Understory Temperatures Using MODIS LST in Mixed Cordilleran Forests. Remote Sensing, 2016, 8, 658.	1.8	5
146	Early Regeneration Dynamics of Pure Black Spruce and Aspen Forests after Wildfire in Boreal Alberta, Canada. Forests, 2020, 11, 333.	0.9	5
147	Assessing the nutritional consequences of switching foraging behavior in wood bison. Ecology and Evolution, 2021, 11, 16165-16176.	0.8	5
148	The real "fire ants― colony size and body size of workers influence the fate of boreal sand hill ants (Hymenoptera: Formicidae) after wildfires in Alberta, Canada. Canadian Entomologist, 2015, 147, 396-404.	0.4	4
149	Selection of vegetation types and density of bison in an arid ecosystem. Journal of Wildlife Management, 2015, 79, 1117-1128.	0.7	4
150	Wildlife habitat enhancements for grizzly bears: Survival rates of planted fruiting shrubs in forest harvests. Forest Ecology and Management, 2016, 369, 144-154.	1.4	4
151	Detectability of species of Carex varies with abundance, morphology, and site complexity. Journal of Vegetation Science, 2019, 30, 352-361.	1.1	4
152	Species richness is a surrogate for rare plant occurrence, but not conservation value, in boreal plant communities. Biodiversity and Conservation, 2020, 29, 99-114.	1.2	4
153	Landscape Patterns of Rare Vascular Plants in the Lower Athabasca Region of Alberta, Canada. Forests, 2020, 11, 699.	0.9	4
154	Prioritizing human safety and multispecies connectivity across a regional road network. Conservation Science and Practice, 2021, 3, e327.	0.9	4
155	Effects of wildfire and soil compaction on recovery of narrow linear disturbances in upland mesic boreal forests. Forest Ecology and Management, 2022, 510, 120073.	1.4	4
156	Detecting changes in understorey and canopy vegetation cycles in West Central Alberta using a fusion of Landsat and MODIS. Applied Vegetation Science, 2020, 23, 223-238.	0.9	3
157	Of detectability and camouflage: evaluating Pollard Walk rules using a common, cryptic butterfly. Ecosphere, 2020, 11, e03101.	1.0	3
158	Distinguishing effects of area per se and isolation from the sampleâ€area effect for true islands and habitat fragments. Ecography, 2021, 44, 1051-1066.	2.1	3
159	Boreal Sand Hills are Areas of High Diversity for Boreal Ants (Hymenoptera: Formicidae). Diversity, 2019, 11, 22.	0.7	2
160	Effects of Fire Severity and Woody Debris on Tree Regeneration for Exploratory Well Pads in Jack Pine (Pinus banksiana) Forests. Forests, 2021, 12, 1330.	0.9	2
161	Vegetation Composition, Dynamics, and Management of a Bracken?Grassland and Northern?Dry Forest Ecosystem. Environmental Management, 2003, 31, 810-821.	1.2	1
162	Reproductive ecology of the distylous species Houstonia longifolia: implications for conservation of a rare species. Botany, 2016, 94, 983-992.	0.5	1

#	Article	IF	CITATIONS
163	Application of the Conservation Planning Tool Zonation to Inform Retention Planning in the Boreal Forest of Western Canada. Frontiers in Ecology and Evolution, 2020, 8, .	1.1	1
164	Quantification of Lichen Cover and Biomass Using Field Data, Airborne Laser Scanning and High Spatial Resolution Optical Data—A Case Study from a Canadian Boreal Pine Forest. Forests, 2020, 11, 682.	0.9	1
165	Landscape estimates of carrying capacity for grizzly bears using nutritional energy supply for management and conservation planning. Journal for Nature Conservation, 2021, 62, 126018.	0.8	1
166	Boreal ground-beetle (Coleoptera: Carabidae) assemblages of the mainland and islands in Lac la Ronge, Saskatchewan, Canada—ERRATUM. Canadian Entomologist, 2017, 149, 549-549.	0.4	0
167	Direct and Indirect Effects of Overstory Canopy and Sex-Biased Density Dependence on Reproduction in the Dioecious Shrub Shepherdia canadensis (Elaeagnaceae). Diversity, 2020, 12, 37.	0.7	0
168	Abundance―and incidenceâ€based estimation of total number of rare species in underâ€sampled sites. Applied Vegetation Science, 2022, 25, .	0.9	0