
Janusz Torzewski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/706211/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	The Potential of Al2O3–ZrO2-Based Composites, Formed via CSC Method, in Linear Infrastructure Applications Based on Their Mechanical, Thermal and Environmental performance. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2022, 53, 663-678.	1.1	4
2	The influence of tool traverse speed on the low cycle fatigue properties of AZ31 friction stir welded joints. Procedia Structural Integrity, 2022, 36, 153-158.	0.3	3
3	Microstructure and Mechanical Properties of Dissimilar Friction Stir Welded Joint AA7020/AA5083 with Different Joining Parameters. Materials, 2022, 15, 1910.	1.3	7
4	Cement-glass composite bricks (CGCB) with interior 3D printed PET-G scaffolding. Journal of Building Engineering, 2022, 52, 104429.	1.6	8
5	A Comparative Study on Laser Powder Bed Fusion of Differently Atomized 316L Stainless Steel. Materials, 2022, 15, 4938.	1.3	6
6	Selective Laser Melted M300 Maraging Steel—Material Behaviour during Ballistic Testing. Materials, 2021, 14, 2681.	1.3	5
7	Al2O3/ZrO2 Materials as an Environmentally Friendly Solution for Linear Infrastructure Applications. Materials, 2021, 14, 2375.	1.3	8
8	Additive Manufacturing of Plastics Used for Protection against COVID19—The Influence of Chemical Disinfection by Alcohol on the Properties of ABS and PETG Polymers. Materials, 2021, 14, 4823.	1.3	13
9	Mechanical Properties Analysis of the AA2519-AA1050-Ti6Al4V Explosive Welded Laminate. Materials, 2020, 13, 4348.	1.3	7
10	The influence of welding parameters on macrostructure and mechanical properties of Sc-modified AA2519-T62 FSW joints. Manufacturing Review, 2020, 7, 28.	0.9	8
11	Research on the Properties and Low Cycle Fatigue of Sc-Modified AA2519-T62 FSW Joint. Materials, 2020, 13, 5226.	1.3	9
12	Crack Growth Behavior of Additively Manufactured 316L Steel—Influence of Build Orientation and Heat Treatment. Materials, 2020, 13, 3259.	1.3	17
13	Comparison of Different Heat Treatment Processes of Selective Laser Melted 316L Steel Based on Analysis of Mechanical Properties. Materials, 2020, 13, 3805.	1.3	15
14	Modification of Structural Properties Using Process Parameters and Surface Treatment of Monolithic and Thin-Walled Parts Obtained by Selective Laser Melting. Materials, 2020, 13, 5662.	1.3	11
15	The Influence of Heat Treatment on Low Cycle Fatigue Properties of Selectively Laser Melted 316L Steel. Materials, 2020, 13, 5737.	1.3	14
16	The protective capability of the laser welded armour steel plates. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2020, 234, 711-721.	0.7	0
17	Microstructure and Low Cycle Fatigue Properties of AA5083 H111 Friction Stir Welded Joint. Materials, 2020, 13, 2381.	1.3	27
18	Influence of Selective Laser Melting Technological Parameters on the Mechanical Properties of Additively Manufactured Elements Using 316L Austenitic Steel. Materials, 2020, 13, 1449.	1.3	20

JANUSZ TORZEWSKI

#	Article	IF	CITATIONS
19	Low Cycle Fatigue Properties of Sc-Modified AA2519-T62 Extrusion. Materials, 2020, 13, 220.	1.3	19
20	The Examination of Restrained Joints Created in the Process of Multi-Material FFF Additive Manufacturing Technology. Materials, 2020, 13, 903.	1.3	26
21	Microstructure and fatigue properties of AA2519-O friction stir welded joint. Materials Today: Proceedings, 2020, 28, 1064-1067.	0.9	2
22	Research on the Friction Stir Welding of Sc-Modified AA2519 Extrusion. Metals, 2019, 9, 1024.	1.0	16
23	The Influence of Post-Weld Heat Treatment on the Microstructure and Fatigue Properties of Sc-Modified AA2519 Friction Stir-Welded Joint. Materials, 2019, 12, 583.	1.3	22
24	Research on the microstructure of a Ti6Al4V-AA1050 explosive-welded bimetallic joint. Materiali in Tehnologije, 2019, 53, 109-113.	0.3	2
25	Investigation on Microstructure and Mechanical Properties of AA 2017A FSW Joints. , 2019, , .		Ο
26	Residual stresses distribution, correlated with bending tests, within explosively welded Ti gr. 2/A1050 bimetals. Materials Characterization, 2018, 144, 461-468.	1.9	12
27	High cycle fatigue properties of explosively welded laminate AA2519/AA1050/Ti6Al4V. Procedia Structural Integrity, 2017, 5, 422-429.	0.3	10
28	Cyclic deformation of aluminium alloys after the preliminary combined loading. Engineering Failure Analysis, 2016, 69, 66-76.	1.8	16
29	Fatigue Cracking of AA2519-Ti6Al4V Laminate Bonded by Explosion Welding. Solid State Phenomena, 2016, 250, 182-190.	0.3	4
30	Influence of Preliminary Combined Loading on Low Cyclic Fatigue Deformation of Aluminum Alloy D16ChATV. Procedia Engineering, 2015, 114, 18-25.	1.2	9
31	Deterministic and Probabilistic Analysis of Semi-elliptical Cracks in Austenitic Steel. , 2014, 3, 2160-2167.		2
32	Deterministic Approach to Predicting the Fatigue Crack Growth in the 2024-T3 Aluminum Alloy Under Variable Amplitude Loading. Fatigue of Aircraft Structures, 2009, 2009, 102-115.	0.3	0
33	Capacity of Fractographic Analysis for Load-Time History Reconstruction and Fatigue Crack Growth Rate Estimation for the 2024-T3 Aluminium Alloy. Fatigue of Aircraft Structures, 2009, 2009, .	0.3	Ο
34	Variable Amplitude Load Interaction in Fatigue Crack Growth for 2024-T3 Aluminium Alloy. , 2006, , 177-178.		2
35	Fatigue Crack Growth Rates of S235 and S355 Steels after Friction Stir Processing. Materials Science Forum, 0, 726, 203-210.	0.3	12
36	Fatigue Behaviour of S235JR Steel after Surface Frictional-Mechanical Treatment in Corrosive Environment. Key Engineering Materials, 0, 598, 105-112.	0.4	1

#	Article	IF	CITATIONS
37	Fatigue Characteristic of S355J2 Steel after Surface Frictional-Mechanical Treatment in Corrosive Environment. Solid State Phenomena, 0, 224, 21-26.	0.3	ο
38	Evaluation of Fatigue Failure of S960QL Steel in the Conditions of Plastic Strain. Solid State Phenomena, 0, 250, 175-181.	0.3	1