
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7061886/publications.pdf Version: 2024-02-01

Ι λιιρλ Διρλς

#	Article	IF	CITATIONS
1	Clinical Relevance of Brain Volume Measures in Multiple Sclerosis. CNS Drugs, 2014, 28, 147-156.	2.7	254
2	Effect of natalizumab on disease progression in secondary progressive multiple sclerosis (ASCEND): a phase 3, randomised, double-blind, placebo-controlled trial with an open-label extension. Lancet Neurology, The, 2018, 17, 405-415.	4.9	238
3	CD73 is required for efficient entry of lymphocytes into the central nervous system during experimental autoimmune encephalomyelitis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9325-9330.	3.3	185
4	Differential Regulation and Function of CD73, a Glycosyl-Phosphatidylinositol–linked 70-kD Adhesion Molecule, on Lymphocytes and Endothelial Cells. Journal of Cell Biology, 1997, 136, 421-431.	2.3	148
5	Expansion of CD56Bright natural killer cells in the peripheral blood of multiple sclerosis patients treated with interferon-beta. Neurological Sciences, 2007, 28, 121-126.	0.9	145
6	In Vivo Detection of Diffuse Inflammation in Secondary Progressive Multiple Sclerosis Using PET Imaging and the Radioligand ¹¹ C-PK11195. Journal of Nuclear Medicine, 2014, 55, 939-944.	2.8	132
7	Detection of Microglial Activation in an Acute Model of Neuroinflammation Using PET and Radiotracers ¹¹ C-(<i>R</i>)-PK11195 and ¹⁸ F-GE-180. Journal of Nuclear Medicine, 2014, 55, 466-472.	2.8	127
8	Serum glial fibrillary acidic protein correlates with multiple sclerosis disease severity. Multiple Sclerosis Journal, 2020, 26, 210-219.	1.4	105
9	Immunoregulatory factors in multiple sclerosis patients during and after pregnancy: relevance of natural killer cells. Clinical and Experimental Immunology, 2008, 151, 235-243.	1.1	99
10	IFN-α Induced Adenosine Production on the Endothelium: A Mechanism Mediated by CD73 (Ecto-5′-Nucleotidase) Up-Regulation. Journal of Immunology, 2004, 172, 1646-1653.	0.4	81
11	CD73 Engagement Promotes Lymphocyte Binding to Endothelial Cells Via a Lymphocyte Function-Associated Antigen-1-Dependent Mechanism. Journal of Immunology, 2000, 165, 5411-5417.	0.4	79
12	Adenosine A2A Receptors in Secondary Progressive Multiple Sclerosis: A [11C]TMSX Brain PET Study. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 1394-1401.	2.4	79
13	Symptomatic therapy in multiple sclerosis: a review for a multimodal approach in clinical practice. Therapeutic Advances in Neurological Disorders, 2011, 4, 139-168.	1.5	76
14	IFNâ€Î² regulates CD73 and adenosine expression at the blood–brain barrier. European Journal of Immunology, 2008, 38, 2718-2726.	1.6	72
15	Smouldering multiple sclerosis: the â€~real MS'. Therapeutic Advances in Neurological Disorders, 2022, 15, 175628642110667.	1.5	72
16	Brain TSPO-PET predicts later disease progression independent of relapses in multiple sclerosis. Brain, 2020, 143, 3318-3330.	3.7	71
17	Effects of age, BMI and sex on the glial cell marker TSPO — a multicentre [11C]PBR28 HRRT PET study. European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46, 2329-2338.	3.3	70
18	Evaluation of the Effect of Fingolimod Treatment on Microglial Activation Using Serial PET Imaging in Multiple Sclerosis. Journal of Nuclear Medicine, 2017, 58, 1646-1651.	2.8	63

#	Article	IF	CITATIONS
19	In Vivo PET Imaging Demonstrates Diminished Microglial Activation After Fingolimod Treatment in an Animal Model of Multiple Sclerosis. Journal of Nuclear Medicine, 2015, 56, 305-310.	2.8	57
20	Hormonal and gender-related immune changes in multiple sclerosis. Acta Neurologica Scandinavica, 2015, 132, 62-70.	1.0	51
21	Microglial activation, white matter tract damage, and disability in MS. Neurology: Neuroimmunology and NeuroInflammation, 2018, 5, e443.	3.1	51
22	Evaluation of Microglial Activation in Multiple Sclerosis Patients Using Positron Emission Tomography. Frontiers in Neurology, 2018, 9, 181.	1.1	51
23	Clinical and immunologic evaluation of women with multiple sclerosis during and after pregnancy. Gender Medicine, 2007, 4, 45-55.	1.4	43
24	Postpartum-activation of multiple sclerosis is associated with down-regulation of tolerogenic HLA-G. Journal of Neuroimmunology, 2007, 187, 205-211.	1.1	42
25	Imaging neuroinflammation in multiple sclerosis using TSPO-PET. Clinical and Translational Imaging, 2015, 3, 461-473.	1.1	41
26	Automated Reference Region Extraction and Population-Based Input Function for Brain [¹¹ C]TMSX PET Image Analyses. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 157-165.	2.4	40
27	Elevated serum soluble vascular adhesion protein-1 (VAP-1) in patients with active relapsing remitting multiple sclerosis. Journal of Neuroimmunology, 2006, 177, 132-135.	1.1	36
28	Natalizumab treatment reduces microglial activation in the white matter of the MS brain. Neurology: Neuroimmunology and NeuroInflammation, 2019, 6, e574.	3.1	34
29	Vascular adhesion proteinâ€1 in human ischaemic stroke. Neuropathology and Applied Neurobiology, 2008, 34, 394-402.	1.8	33
30	Update on the management of multiple sclerosis during the COVID-19 pandemic and post pandemic: An international consensus statement. Journal of Neuroimmunology, 2021, 357, 577627.	1.1	33
31	Mechanism of Action of IFN-beta in the Treatment of Multiple Sclerosis: A Special Reference to CD73 and Adenosine. Annals of the New York Academy of Sciences, 2007, 1110, 641-648.	1.8	32
32	Hemophagocytic lymphohistiocytosis in 2 patients with multiple sclerosis treated with alemtuzumab. Neurology, 2018, 90, 849-851.	1.5	32
33	Botulinum toxin alleviates dysphagia of patients with inclusion body myositis. Journal of the Neurological Sciences, 2017, 380, 142-147.	0.3	30
34	CD73 mediates lymphocyte binding to vascular endothelium in inflamed human skin. European Journal of Immunology, 1997, 27, 248-254.	1.6	29
35	Natalizumab treatment leads to an increase in circulating CXCR3-expressing B cells. Neurology: Neuroimmunology and NeuroInflammation, 2016, 3, e292.	3.1	29
36	<i>In Vivo</i> PET Imaging of Adenosine 2A Receptors in Neuroinflammatory and Neurodegenerative Disease. Contrast Media and Molecular Imaging, 2017, 2017, 1-15.	0.4	27

#	Article	IF	CITATIONS
37	Positron emission tomography in multiple sclerosis — straight to the target. Nature Reviews Neurology, 2021, 17, 663-675.	4.9	27
38	Insights into disseminated MS brain pathology with multimodal diffusion tensor and PET imaging. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7, .	3.1	26
39	Oral Doxycycline Compared to Intravenous Ceftriaxone in the Treatment of Lyme Neuroborreliosis: A Multicenter, Equivalence, Randomized, Open-label Trial. Clinical Infectious Diseases, 2021, 72, 1323-1331.	2.9	26
40	High serum neurofilament associates with diffuse white matter damage in MS. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, .	3.1	25
41	Imaging of microglial activation in MS using PET: Research use and potential future clinical application. Multiple Sclerosis Journal, 2017, 23, 496-504.	1.4	24
42	Positron emission tomography imaging in evaluation of MS pathology in vivo. Multiple Sclerosis Journal, 2018, 24, 1399-1412.	1.4	22
43	CD73 and Adhesion of B-Cells to Follicular Dendritic Cells. Leukemia and Lymphoma, 1998, 29, 37-47.	0.6	21
44	Severe neutropenia after rituximab-treatment of multiple sclerosis. Multiple Sclerosis and Related Disorders, 2018, 20, 3-5.	0.9	21
45	Increased serum glial fibrillary acidic protein associates with microstructural white matter damage in multiple sclerosis. Multiple Sclerosis and Related Disorders, 2021, 50, 102810.	0.9	21
46	Alteration of prolyl oligopeptidase and activated α-2-macroglobulin in multiple sclerosis subtypes and in the clinically isolated syndrome. Biochemical Pharmacology, 2013, 85, 1783-1794.	2.0	20
47	Pregnancy and multiple sclerosis. Obstetric Medicine, 2012, 5, 94-97.	0.5	19
48	Rituximab in the treatment of multiple sclerosis in the Hospital District of Southwest Finland. Multiple Sclerosis and Related Disorders, 2020, 40, 101980.	0.9	18
49	Carbon monoxide poisoning-induced nigrostriatal dopaminergic dysfunction detected using positron emission tomography (PET). NeuroToxicology, 2010, 31, 403-407.	1.4	17
50	Natalizumab treatment shows low cumulative probabilities of confirmed disability worsening to EDSS milestones in the long-term setting. Multiple Sclerosis and Related Disorders, 2018, 24, 11-19.	0.9	17
51	Microglia in multiple sclerosis – pathogenesis and imaging. Current Opinion in Neurology, 2022, 35, 299-306.	1.8	17
52	Positron emission tomography as an aid in the diagnosis and follow-up of Riedel's thyroiditis. European Journal of Internal Medicine, 2004, 15, 186-189.	1.0	15
53	Utilization of PET imaging in differential diagnostics between a tumefactive multiple sclerosis lesion and low-grade glioma. Multiple Sclerosis and Related Disorders, 2016, 9, 147-149.	0.9	14
54	Association between soluble L-selectin and anti-JCV antibodies in natalizumab-treated relapsing-remitting MS patients. Multiple Sclerosis and Related Disorders, 2015, 4, 334-338.	0.9	13

#	Article	IF	CITATIONS
55	CCR7 expression on peripheral blood lymphocytes is up-regulated following treatment of multiple sclerosis with interferon-beta. Neurological Research, 2007, 29, 763-766.	0.6	12
56	Vascular adhesion protein-1 is actively involved in the development of inflammatory lesions in rat models of multiple sclerosis. Journal of Neuroinflammation, 2018, 15, 128.	3.1	12
57	Pregnancy-Induced Changes in microRNA Expression in Multiple Sclerosis. Frontiers in Immunology, 2020, 11, 552101.	2.2	12
58	Janus head: the dual role of HLA-G in CNS immunity. Cellular and Molecular Life Sciences, 2011, 68, 407-416.	2.4	11
59	Phenotyping of multiple sclerosis lesions according to innate immune cell activation using 18 kDa translocator protein-PET. Brain Communications, 2022, 4, fcab301.	1.5	11
60	Folate receptor-targeted positron emission tomography of experimental autoimmune encephalomyelitis in rats. Journal of Neuroinflammation, 2019, 16, 252.	3.1	10
61	Innate Immune Cell–Related Pathology in the Thalamus Signals a Risk for Disability Progression in Multiple Sclerosis. Neurology: Neuroimmunology and NeuroInflammation, 2022, 9, .	3.1	10
62	Lower brain diffusivity in postpartum period compared to late pregnancy: results from a prospective imaging study of multiple sclerosis patients. Neuroradiology, 2012, 54, 823-828.	1.1	9
63	Specific aspects of modern life for people with multiple sclerosis: considerations for the practitioner. Therapeutic Advances in Neurological Disorders, 2014, 7, 137-149.	1.5	9
64	Methanol intoxication-induced nigrostriatal dysfunction detected using 6-[18F]fluoro-l-dopa PET. NeuroToxicology, 2008, 29, 671-674.	1.4	8
65	Synaptic Loss in Multiple Sclerosis: A Systematic Review of Human Post-mortem Studies. Frontiers in Neurology, 2021, 12, 782599.	1.1	8
66	Successful pregnancy of a patient with Balo's concentric sclerosis. Multiple Sclerosis Journal, 2005, 11, 346-348.	1.4	7
67	Drug reaction with eosinophilia and systemic symptoms after ocrelizumab therapy. Multiple Sclerosis and Related Disorders, 2020, 42, 102058.	0.9	7
68	Dimethyl fumarate decreases short-term but not long-term inflammation in a focal EAE model of neuroinflammation. EJNMMI Research, 2022, 12, 6.	1.1	7
69	CD73 is expressed on invading T lymphocytes in the inflamed peripheral nerve. Muscle and Nerve, 2009, 40, 287-289.	1.0	6
70	Exposure to natalizumab during pregnancy and lactation is safe – No. Multiple Sclerosis Journal, 2020, 26, 889-891.	1.4	6
71	Efficacy and tolerability of folate-aminopterin therapy in a rat focal model of multiple sclerosis. Journal of Neuroinflammation, 2021, 18, 30.	3.1	6
72	Frequency and etiology of acute transverse myelitis in Southern Finland. Multiple Sclerosis and Related Disorders, 2020, 46, 102562.	0.9	5

#	Article	IF	CITATIONS
73	Association between microglial activation and serum kynurenine pathway metabolites in multiple sclerosis and Related Disorders, 2022, 59, 103667.	0.9	5
74	Elevated concentration of C-reactive protein is associated with pregnancy-related co-morbidities but not with relapse activity in multiple sclerosis. Neurological Sciences, 2015, 36, 441-447.	0.9	4
75	Cessation of anti-VLA-4 therapy in a focal rat model of multiple sclerosis causes an increase in neuroinflammation. EJNMMI Research, 2019, 9, 38.	1.1	4
76	Effect of dopaminergic medication on adenosine 2A receptor availability in patients with Parkinson's disease. Parkinsonism and Related Disorders, 2021, 86, 40-44.	1.1	4
77	Riedel's thyroiditis in a patient with multiple sclerosis. Neuroendocrinology Letters, 2005, 26, 67-8.	0.2	4
78	Effect of Fingolimod-Treatment on Blood Lipid Profiles of Multiple Sclerosis Patients. Journal of NeuroImmune Pharmacology, 2016, 11, 611-612.	2.1	3
79	Fingolimod treatment reverses signs of diffuse white matter damage in multiple sclerosis: A pilot study. Multiple Sclerosis and Related Disorders, 2021, 48, 102690.	0.9	3
80	Development of an immunoassay for the detection of cystatin C dimers. Journal of Immunological Methods, 2010, 355, 14-20.	0.6	2
81	Progressive dopaminergic defect in a patient with primary progressive multiple sclerosis. Multiple Sclerosis and Related Disorders, 2019, 36, 101385.	0.9	2
82	Successive pregnancies in multiple sclerosis. Neurology, 2016, 87, 1316-1317.	1.5	1
83	Whole Brain Adiabatic T 1rho and Relaxation Along a Fictitious Field Imaging in Healthy Volunteers and Patients With Multiple Sclerosis: Initial Findings. Journal of Magnetic Resonance Imaging, 2021, 54, 866-879.	1.9	1
84	Pregnancy and Multiple Sclerosis. , 2011, , 1-11.		0
85	Labour-associated increase in C-reactive protein concentration is not predictive of postpartum relapse activity among mothers with multiple sclerosis. Multiple Sclerosis Journal, 2014, 20, 1790-1791.	1.4	0
86	Elevated levels of soluble CD26 and CD30 in multiple sclerosis. Clinical and Experimental Neuroimmunology, 2015, 6, 419-425.	0.5	0
87	No evidence of human herpesvirus DNA in the CSF of multiple sclerosis patients. Neurological Sciences. 2015. 36. 1053-1054.	0.9	0