Diego Morata

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7061720/publications.pdf

Version: 2024-02-01

123 papers

2,823 citations

147801 31 h-index 243625 44 g-index

126 all docs

 $\begin{array}{c} 126 \\ \\ \text{docs citations} \end{array}$

times ranked

126

3152 citing authors

#	Article	IF	CITATIONS
1	Geochemical and micro-textural fingerprints of boiling in pyrite. Geochimica Et Cosmochimica Acta, 2019, 246, 60-85.	3.9	137
2	Miocene to Late Quaternary Patagonian basalts (46–47°S): Geochronometric and geochemical evidence for slab tearing due to active spreading ridge subduction. Journal of Volcanology and Geothermal Research, 2006, 149, 346-370.	2.1	100
3	Petrogenesis of the Eocene and Mio–Pliocene alkaline basaltic magmatism in Meseta Chile Chico, southern Patagonia, Chile: Evidence for the participation of two slab windows. Lithos, 2005, 82, 315-343.	1.4	81
4	The Almadén mercury mining district, Spain. Mineralium Deposita, 1999, 34, 539-548.	4.1	74
5	Environmental assessment of copper–gold–mercury mining in the Andacollo and Punitaqui districts, northern Chile. Applied Geochemistry, 2004, 19, 1855-1864.	3.0	74
6	Geothermal barriers, policies and economics in Chile $\hat{a} \in$ Lessons for the Andes. Renewable and Sustainable Energy Reviews, 2015, 51, 1390-1401.	16.4	70
7	Plume-subduction interaction forms large auriferous provinces. Nature Communications, 2017, 8, 843.	12.8	69
8	The Early Andean Magmatic Province (EAMP): 40Ar/39Ar dating on Mesozoic volcanic and plutonic rocks from the Coastal Cordillera, northern Chile. Journal of Volcanology and Geothermal Research, 2006, 157, 311-330.	2.1	62
9	Formation of massive iron deposits linked to explosive volcanic eruptions. Scientific Reports, 2018, 8, 14855.	3.3	61
10	Early Evidence (ca. 12,000 BP) for Iron Oxide Mining on the Pacific Coast of South America. Current Anthropology, 2011, 52, 463-475.	1.6	58
11	Elemental concentrations of ambient particles and cause specific mortality in Santiago, Chile: a time series study. Environmental Health, 2012, 11, 82.	4.0	58
12	Tertiary volcanism during extension in the Andean foothills of central Chile (33°15′–33°45′S). Bulletin of the Geological Society of America, 2003, 115, 1523.	3.3	57
13	Assessment of high enthalpy geothermal resources and promising areas of Chile. Geothermics, 2016, 59, 1-13.	3.4	57
14	Late Jurassic terrane collision in the northwestern margin of Gondwana (Cajamarca Complex, eastern) Tj ETQq0 0 (0_rgBT /O\ 2.1	verlock 10 Tf
15	Bimodal back-arc alkaline magmatism after ridge subduction: Pliocene felsic rocks from Central Patagonia (47°S). Lithos, 2008, 101, 191-217.	1.4	46
16	Pliocene extensional tectonics in the Eastern Central Patagonian Cordillera: geochronological constraints and new field evidence. Terra Nova, 2007, 19, 413-424.	2.1	45
17	Detrital zircons from late Paleozoic accretionary complexes in north-central Chile (28°–32°S): Possible fingerprints of the Chilenia terrane. Journal of South American Earth Sciences, 2011, 32, 460-476.	1.4	45
18	Geochemistry of thermal waters in the Southern Volcanic Zone, Chile – Implications for structural controls on geothermal fluid composition. Chemical Geology, 2017, 466, 545-561.	3.3	44

#	Article	IF	CITATIONS
19	Geochemistry constraints of Mesozoic–Cenozoic calc-alkaline magmatism in the South Shetland arc, Antarctica. Journal of South American Earth Sciences, 2005, 18, 407-425.	1.4	41
20	Extensional Lower Cretaceous volcanism in the Coastal Range (29°20′–30°S), Chile: geochemistry and petrogenesis. Journal of South American Earth Sciences, 2003, 16, 459-476.	1.4	39
21	Formation of cristobalite nanofibers during explosive volcanic eruptions. Geology, 2009, 37, 435-438.	4.4	39
22	The densest meteorite collection area in hot deserts: The San Juan meteorite field (Atacama Desert,) Tj ETQq0 0 0	O rgBT /Ov	verlock 10 Tf
23	Intraplate mafic magmatism, degasification, and deposition of mercury: The giant Almadén mercury deposit (Spain) revisited. Ore Geology Reviews, 2013, 51, 93-102.	2.7	37
24	Regolith production and chemical weathering of granitic rocks in central Chile. Chemical Geology, 2016, 446, 87-98.	3.3	37
25	Spinel-facies mantle xenoliths from Cerro Redondo, Argentine Patagonia: Petrographic, geochemical, and isotopic evidence of interaction between xenoliths and host basalt. Lithos, 2005, 82, 485-502.	1.4	35
26	Ages and cooling history of the Early Cretaceous Caleu pluton: testimony of a switch from a rifted to a compressional continental margin in central Chile. Journal of the Geological Society, 2005, 162, 273-287.	2.1	34
27	Re–Os isotope systematics for the Lince–EstefanÃa deposit: constraints on the timing and source of copper mineralization in a stratabound copper deposit, Coastal Cordillera of Northern Chile. Mineralium Deposita, 2006, 41, 99-105.	4.1	34
28	Physical, chemical and mineralogical evolution of the Tolhuaca geothermal system, southern Andes, Chile: Insights into the interplay between hydrothermal alteration and brittle deformation. Journal of Volcanology and Geothermal Research, 2016, 324, 88-104.	2.1	34
29	The Tropezón Cu–Mo–(Au) deposit, Northern Chile: the missing link between IOCG and porphyry copper systems?. Mineralium Deposita, 2010, 45, 313-321.	4.1	33
30	Estimating low-enthalpy geothermal energy potential for district heating in Santiago basin–Chile (33.5°S). Renewable Energy, 2015, 76, 186-195.	8.9	33
31	Time interval between volcanism and burial metamorphism and rate of basin subsidence in a Cretaceous Andean extensional setting. Tectonophysics, 1999, 313, 433-447.	2.2	31
32	The origin of Patagonia revealed by Re-Os systematics of mantle xenoliths. Precambrian Research, 2017, 294, 15-32.	2.7	31
33	Andean magmatism. , 0, , 115-146.		31
34	The Bandurrias gabbro: Late Oligocene alkaline magmatism in the Patagonian Cordillera. Journal of South American Earth Sciences, 2005, 18, 147-162.	1.4	29
35	Characterisation of aerosol from Santiago, Chile: an integrated PIXE–SEM–EDX study. Environmental Geology, 2008, 56, 81-95.	1.2	27
36	P–T–t evolution of an Early Silurian medium-grade shear zone on the west side of the Famatinian magmatic arc, Argentina: Implications for the assembly of the Western Gondwana margin. Gondwana Research, 2008, 13, 216-226.	6.0	27

#	Article	IF	CITATIONS
37	Fault-controlled development of shallow hydrothermal systems: Structural and mineralogical insights from the Southern Andes. Geothermics, 2017, 66, 156-173.	3.4	27
38	Sr- and Nd- isotope variations along the Pleistocene San Pedro – Linzor volcanic chain, N. Chile: Tracking the influence of the upper crustal Altiplano-Puna Magma Body. Journal of Volcanology and Geothermal Research, 2017, 341, 172-186.	2.1	27
39	Highly siderophile elements mobility in the subcontinental lithospheric mantle beneath southern Patagonia. Lithos, 2018, 314-315, 579-596.	1.4	27
40	Syntectonic emplacement of the Middle Jurassic Conc \tilde{A}^3 n Mafic Dike Swarm, Coastal Range, central Chile (33 \hat{A}° S). Tectonophysics, 2006, 425, 101-122.	2.2	26
41	Evolution of clay mineral assemblages in the Tinguiririca geothermal field, Andean Cordillera of central Chile: an XRD and HRTEM-AEM study. Journal of Volcanology and Geothermal Research, 2014, 282, 43-59.	2.1	26
42	Modeling of subduction components in the Genesis of the Meso-Cenozoic igneous rocks from the South Shetland Arc, Antarctica. Lithos, 2005, 82, 435-453.	1.4	24
43	Hydrothermal alteration in an exhumed crustal fault zone: Testing geochemical mobility in the Caleta Coloso Fault, Atacama Fault System, Northern Chile. Tectonophysics, 2014, 623, 147-168.	2.2	24
44	A secondary precious and base metal mineralization in chromitites linked to the development of a Paleozoic accretionary complex in Central Chile. Ore Geology Reviews, 2016, 78, 14-40.	2.7	24
45	Magmatic differentiation at La Poruña scoria cone, Central Andes, northern Chile: Evidence for assimilation during turbulent ascent processes, and genetic links with mafic eruptions at adjacent San Pedro volcano. Lithos, 2019, 338-339, 128-140.	1.4	24
46	Linking the mafic volcanism with the magmatic stages during the last 1†Ma in the main volcanic arc of the Altiplano-Puna Volcanic Complex (Central Andes). Journal of South American Earth Sciences, 2019, 95, 102295.	1.4	23
47	Chlorite composition and geothermometry: a comparative HRTEM/AEM-EMPA-XRD study of Cambrian basic lavas from the Ossa Morena Zone, SW Spain. Clay Minerals, 2002, 37, 267-281.	0.6	22
48	Contrasting geochemistry and metamorphism of pillow basalts in metamorphic complexes from Aysén, S. Chile. Journal of South American Earth Sciences, 1999, 12, 379-388.	1.4	21
49	A lowâ€grade metamorphic model for the Miocene volcanic sequences in the Andes of central Chile. New Zealand Journal of Geology, and Geophysics, 2000, 43, 83-93.	1.8	21
50	The upper crustal magma plumbing system of the Pleistocene Apacheta-Aguilucho Volcanic Complex area (Altiplano-Puna, northern Chile) as inferred from the erupted lavas and their enclaves. Journal of Volcanology and Geothermal Research, 2019, 373, 179-198.	2.1	21
51	40Ar/39Ar dating of volcanism and subsequent very low-grade metamorphism in a subsiding basin: example of the Cretaceous lava series from central Chile. Chemical Geology, 2005, 214, 157-177.	3.3	20
52	Geochemistry of metals and metalloids in siliceous sinter deposits: Implications for elemental partitioning into silica phases. Applied Geochemistry, 2017, 80, 112-133.	3.0	20
53	Geochemical characterization of the geothermal system at Villarrica volcano, Southern Chile; Part 1: Impacts of lithology on the geothermal reservoir. Geothermics, 2018, 74, 226-239.	3.4	19
54	The genetic relationship between mafic dike swarms and plutonic reservoirs in the mesozoic of central chile (30°–33°45′S): insights from AMS and geochemistry. International Journal of Earth Sciences, 2009, 98, 177-201.	1.8	18

#	Article	IF	CITATIONS
55	Titanian clinohumite and chondrodite in antigorite serpentinites from Central Chile: evidence for deep and cold subduction. European Journal of Mineralogy, 2017, 29, 959-970.	1.3	18
56	Decoding fjord water contribution and geochemical processes in the Aysen thermal springs (Southern Patagonia, Chile). Journal of Geochemical Exploration, 2018, 185, 1-13.	3.2	18
57	Sealing capacity of clay-cap units above the Cerro Pabell \tilde{A}^3 n hidden geothermal system (northern) Tj ETQq1 1 Geothermal Research, 2019, 384, 1-14.	0.784314 rg 2.1	gBT /Overlock 18
58	Thermo-mechanical behavior of a granodiorite from the Liqui $\tilde{A}\pm e$ fractured geothermal system (39 \hat{A}° S) in the Southern Volcanic Zone of the Andes. Geothermics, 2020, 87, 101828.	3.4	18
59	Extremely negative and inhomogeneous sulfur isotope signatures in Cretaceous Chilean manto-type Cu–(Ag) deposits, Coastal Range of central Chile. Ore Geology Reviews, 2014, 56, 13-24.	2.7	17
60	Resistivity distribution from mid-crustal conductor to near-surface across the 1200 km long Liquiñe-Ofqui Fault System, southern Chile. Geophysical Journal International, 2016, 207, 1387-1400.	2.4	17
61	Exploring the shallow geothermal resources in the Chilean Southern Volcanic Zone: Insight from the Liquiñe thermal springs. Journal of Geochemical Exploration, 2020, 218, 106611.	3.2	17
62	Subduction of an Active Spreading Ridge Beneath Southern South America: A Review of the Cenozoic Geological Records from the Andean Foreland, Central Patagonia (46–47°S). Frontiers in Earth Sciences, 2009, , 227-246.	0.1	17
63	Illitization sequence controlled by temperature in volcanic geothermal systems: The Tinguiririca geothermal field, Andean Cordillera, Central Chile. Applied Clay Science, 2016, 134, 221-234.	5.2	16
64	A review of the geodynamic constraints on the development and evolution of geothermal systems in the Central Andean Volcanic Zone (18–28°Lat.S). International Geology Review, 2020, 62, 1294-1318.	2.1	16
65	Structural controls on fluid circulation at the Caviahue-Copahue Volcanic Complex (CCVC) geothermal area (Chile-Argentina), revealed by soil CO 2 and temperature, self-potential, and helium isotopes. Journal of Volcanology and Geothermal Research, 2017, 341, 104-118.	2.1	15
66	Clay mineral associations in the clay cap from the Cerro Pabell \tilde{A}^3 n blind geothermal system, Andean Cordillera, Northern Chile. Clay Minerals, 2018, 53, 117-141.	0.6	15
67	Soil CO2 flux and temperature from a new geothermal area in the Cord \tilde{A}^3 n de Inacaliri Volcanic Complex (northern Chile). Geothermics, 2021, 89, 101961.	3.4	15
68	Deformation and magma transport in a crystallizing plutonic complex, Coastal Batholith, central Chile., 2015, 11, 1401-1426.		14
69	Silver-Rich Chalcopyrite from the Active Cerro Pabell $ ilde{A}^3$ n Geothermal System, Northern Chile. Minerals (Basel, Switzerland), 2020, 10, 113.	2.0	14
70	Crustal contribution in the genesis of the bimodal Triassic volcanism from the Coastal Range, central Chile. Andean Geology, 2000, 27, .	0.5	13
71	Volcanismo calcoalcalino durante el Mioceno Medio en Patogonia Central (47°S): petrogenesis e implicaciones en la dinamica de placas Andean Geology, 2010, 37, .	0.5	13
72	Time relationships between volcanism–plutonism–alteration–mineralization in Cu-stratabound ore deposits from the Michilla mining district, northern Chile: a 40Ar/39Ar geochronological approach. Mineralium Deposita, 2008, 43, 61-78.	4.1	12

#	Article	IF	CITATIONS
73	Geochemical features of aerosols in Santiago de Chile from time series analysis. Environmental Earth Sciences, 2013, 69, 2073-2090.	2.7	12
74	Slab-derived components in the subcontinental lithospheric mantle beneath Chilean Patagonia: Geochemistry and Sr–Nd–Pb isotopes of mantle xenoliths and host basalt. Lithos, 2017, 292-293, 179-197.	1.4	12
7 5	Environmental controls on silica sinter formation revealed by radiocarbon dating. Geology, 2019, 47, 330-334.	4.4	12
76	Unraveling the Effects of Melt–Mantle Interactions on the Gold Fertility of Magmas. Frontiers in Earth Science, 2020, 8, .	1.8	12
77	Mineralogy and geochemistry of El Dorado epithermal gold deposit, El Sauce district, central-northern Chile. Mineralogy and Petrology, 2008, 92, 341-360.	1.1	11
78	A paleomagnetic and magnetic fabric study of the Illapel Plutonic Complex, Coastal Range, central Chile: Implications for emplacement mechanism and regional tectonic evolution during the mid-Cretaceous. Journal of South American Earth Sciences, 2014, 50, 12-26.	1.4	11
79	Contrasting P-T paths of shield and rejuvenated volcanism at Robinson Crusoe Island, Juan Fernández Ridge, SE Pacific. Journal of Volcanology and Geothermal Research, 2017, 341, 242-254.	2.1	11
80	Radiocarbon Dating of Silica Sinter and Postglacial Hydrothermal Activity in the El Tatio Geyser Field. Geophysical Research Letters, 2020, 47, e2020GL087908.	4.0	11
81	Fuchsite and other Cr-rich phyllosilicates in ultramafic enclaves from the Almadén mercury mining district, Spain. Clay Minerals, 2001, 36, 345-354.	0.6	10
82	A model for thermal gradient and heat flow in central Chile: The role of thermal properties. Journal of South American Earth Sciences, 2019, 91, 88-101.	1.4	10
83	Seismicity in a Transpressional Volcanic Arc: The Liquiñeâ€Ofqui Fault System in the Puyuhuapi Area, Southern Andes, Chile (44°S). Tectonics, 2020, 39, e2020TC006391.	2.8	10
84	Significance of K-Ar dating of very low-grade metamorphism in Triassic-Jurassic pelites from the Coastal Range of central Chile. Clay Minerals, 2004, 39, 151-162.	0.6	9
85	Geochronology of the Lower Cretaceous volcanism from the Coastal Range (29°20'-30°S), Chile. Andean Geology, 2008, 35, .	0.5	9
86	Peraluminous Grenvillian TTG in the Sierra de Pie de Palo, Western Sierras Pampeanas, Argentina: Petrology, geochronology, geochemistry and petrogenetic implications. Precambrian Research, 2010, 177, 308-322.	2.7	9
87	Active and fossil hydrothermal zones of the Apacheta volcano: Insights for the Cerro Pabell \tilde{A}^3 n hidden geothermal system (Northern Chile). Geothermics, 2021, 96, 102206.	3.4	9
88	Vermiculite-like minerals in low-grade metasediments from the Coastal Range of central Chile. Clay Minerals, 2002, 37, 221-234.	0.6	8
89	Timing the tectonic mingling of ultramafic rocks and metasediments in the southern section of the coastal accretionary complex of central Chile. International Geology Review, 2018, 60, 2031-2045.	2.1	8
90	Digital Rock Approach to Model the Permeability in an Artificially Heated and Fractured Granodiorite from the LiquiA±e Geothermal System (39°S). Rock Mechanics and Rock Engineering, 2020, 53, 1179-1204.	5 . 4	8

#	Article	IF	CITATIONS
91	Post-melting oxidation of highly primitive basalts from the southern Andes. Geochimica Et Cosmochimica Acta, 2020, 273, 291-312.	3.9	8
92	Magmatic-hydrothermal evolution of the El Laco iron deposit revealed by trace element geochemistry and high-resolution chemical mapping of magnetite assemblages. Geochimica Et Cosmochimica Acta, 2022, 330, 230-257.	3.9	8
93	U–Pb ages and metamorphic evolution of the La Pampa Gneisses: Implications for the evolution of the Chilenia Terrane and Permo-Triassic tectonics of north Central Chile. Journal of South American Earth Sciences, 2013, 47, 100-115.	1.4	7
94	Occurrence and Distribution of Silver in the World-Class RÃo Blanco Porphyry Cu-Mo Deposit, Central Chile. Economic Geology, 2020, 115, 1619-1644.	3.8	7
95	Geochronology and petrogenesis of intrusive rocks in the Coastal Cordillera of northern Chile: Insights from zircon U-Pb dating and trace element geochemistry. Gondwana Research, 2021, 93, 48-72.	6.0	7
96	Compositional variations of syntectonic white-mica in low-grade ignimbritic mylonite. Journal of Structural Geology, 2005, 27, 745-767.	2.3	6
97	Geochronology of very low-grade Mesozoic Andean metabasites; an approach through the K–Ar, ⁴⁰ Ar/ ³⁹ Ar and U–Pb LA-MC-ICP-MS methods. Journal of the Geological Society, 2008, 165, 579-584.	2.1	6
98	Geochemical constraints on the petrogenesis of Triassic alkaline basalts of Sierra de Valle FÃ \otimes rtil, Western Sierras Pampeanas, Argentina: implications for their origin, evolution and tectonic setting. Journal of South American Earth Sciences, 2019, 95, 102297.	1.4	6
99	Palaeopermeability anisotropy and geometrical properties of sealed-microfractures from micro-CT analyses: An open-source implementation. Micron, 2019, 117, 29-39.	2.2	6
100	Reservoir architecture model and heat transfer modes in the El Tatio-La Torta geothermal system, Central Andes of northern Chile. Geothermics, 2021, 89, 101940.	3.4	6
101	Structural control on shallow hydrogeochemical processes at Caviahue-Copahue Volcanic Complex (CCVC), Argentina. Journal of Volcanology and Geothermal Research, 2021, 414, 107228.	2.1	6
102	Metalurgia prehisp \tilde{A}_i nica en las sociedades costeras del norte de Chile (quebrada Mamilla, Tocopilla). Estudios Atacamenos, 2010, , 23-42.	0.3	6
103	Room temperature 57Fe Mössbauer spectroscopy of ordinary chondrites from the Atacama Desert (Chile): constraining the weathering processes on desert meteorites. Hyperfine Interactions, 2007, 175, 9-14.	0.5	5
104	Upper crustal differentiation processes and their role in 238U-230Th disequilibria at the San Pedro-Linzor volcanic chain (Central Andes). Journal of South American Earth Sciences, 2020, 102, 102672.	1.4	5
105	Assessing the role of bitumen in the formation of stratabound Cu-(Ag) deposits: Insights from the Lorena deposit, Las Luces district, northern Chile. Ore Geology Reviews, 2020, 124, 103639.	2.7	5
106	Transtension y transpresion del Jurasico Medio-Superior al Cretacico Inferior durante la construccion del arco magmatico en Chile central: evidencia a partir de enjambres de diques maficos Andean Geology, 2011, 38, .	0.5	5
107	Evolution of the Azufre volcano (northern Chile): Implications for the Cerro Pabellón Geothermal Field as inferred from long lasting eruptive activity. Journal of Volcanology and Geothermal Research, 2022, 423, 107472.	2.1	5
108	Petrogenesis of shield volcanism from the Juan Fern \tilde{A}_i ndez Ridge, Southeast Pacific: Melting of a low-temperature pyroxenite-bearing mantle plume. Geochimica Et Cosmochimica Acta, 2019, 257, 311-335.	3.9	4

#	Article	IF	CITATIONS
109	The effect of axial stress in maximum sustainable fluid pressure in Andersonian and non-Andersonian crust: A field-based numerical study from the Southern Andes (39°S). Journal of Structural Geology, 2020, 140, 104131.	2.3	4
110	Stable isotope and anthropogenic tracer signature of waters in an Andean geothermal system. Applied Geochemistry, 2021, 128, 104953.	3.0	4
111	El Oroclino del Maipo: Un rasgo estructural de primer orden en la evoluci \tilde{A}^3 n geodin \tilde{A}_1 mica Mioceno a Reciente en los Andes de Chile central Andean Geology, 2013, 40, .	0.5	4
112	Trace Element Geochemistry of Pyrite from Bitumen-Bearing Stratabound Cu–(Ag) Deposits, Northern Chile. ACS Earth and Space Chemistry, 2021, 5, 566-579.	2.7	3
113	Hydrogeochemical Characterization as a Tool to Recognize "Masked Geothermal Waters―in BahÃa Concepción, Mexico. Resources, 2021, 10, 23.	3.5	3
114	Nature and P-T-t constraints of very low-grade metamorphism in the Triassic-Jurassic basins, Coastal Range, central Chile. Andean Geology, 2005, 32, .	0.5	3
115	Microstructures and interlayering in pyrophyllite from the Coastal Range of central Chile: evidence of a disequilibrium assemblage. Clay Minerals, 2004, 39, 439-452.	0.6	3
116	The Hydrothermal Alteration of the Cordón de Inacaliri Volcanic Complex in the Framework of the Hidden Geothermal Systems within the Pabelloncito Graben (Northern Chile). Minerals (Basel,) Tj ETQq0 0 0 rgBT	⊺/Qværloch	R 180 Tf 50 45
117	Application of the Mineralogy and Mineral Chemistry of Carbonates as a Genetic Tool in the Hydrothermal Environment. Minerals (Basel, Switzerland), 2021, 11, 822.	2.0	2
118	Selective reactivation of inherited fault zones driven by stress field changes: Insights from structural and paleostress analysis of the Pocuro Fault Zone, Southern Central Andes (32.8°S). Journal of South American Earth Sciences, 2022, 118, 103914.	1.4	2
119	Development of complex, sub-vertical layering in the Cortaderas gabbro intrusion, Central Chile. Lithos, 2019, 340-341, 124-138.	1.4	1
120	The Alpehue geyser field, Sollipulli Volcano, Chile. Journal of Volcanology and Geothermal Research, 2020, 406, 107065.	2.1	1
121	Unravelling the hydrothermal system of Laguna del Maule restless volcanic field, in the Andean Southern Volcanic Zone (36° 10′S). Journal of Volcanology and Geothermal Research, 2022, 424, 107498.	2.1	1
122	Multi-scale flow structure of a strike-slip tectonic setting: A self-similar model for the Liquiñe-Ofqui Fault System and the Andean Transverse Faults, Southern Andes (39–40°S). Geothermics, 2022, 103, 102424.	3.4	1
123	Assessing the Hybridization of an Existing Geothermal Plant by Coupling a CSP System for Increasing Power Generation. Energies, 2022, 15, 1961.	3.1	0