Veena Ragupathi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7061198/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Scalable fabrication of graphitic-carbon nitride thin film for optoelectronic application. Materials Today: Proceedings, 2023, 80, 2115-2118.	1.8	4
2	Enhancement of photoluminescence intensity of epoxy thin-film resin by nano graphitic carbon nitride. Physica B: Condensed Matter, 2022, 632, 413718.	2.7	1
3	Porous Hard Carbon as High-Performance Electrode Material for Supercapacitors: Towards Sustainable Approach. ECS Journal of Solid State Science and Technology, 2022, 11, 041010.	1.8	3
4	Bandgap engineering in graphitic carbon nitride: Effect of precursors. Optik, 2020, 202, 163601.	2.9	30
5	Enhanced Electrical and Optical properties of Al doped and ZnO nanoparticles for Optoelectronic Application: Eco-friendly Green Route. Journal of Physics: Conference Series, 2020, 1495, 012040.	0.4	4
6	CuO/g-C3N4 nanocomposite as promising photocatalyst for photoelectrochemical water splitting. Optik, 2020, 208, 164569.	2.9	48
7	Enhanced electrochemical performance of nanopyramid-like LiMnPO4/C cathode for lithium–ion batteries. Applied Surface Science, 2019, 495, 143541.	6.1	26
8	Photoluminescence quenching of green synthesized manganese doped zinc oxide by sodium iodide doped Polypyrrole polymer. Thin Solid Films, 2019, 689, 137510.	1.8	3
9	Optical properties of P- type polypyrrole thin film synthesized by pulse laser deposition technique: Hole transport layer in electroluminescence devices. Optik, 2019, 194, 163034.	2.9	19
10	Study of optical and electrical property of NaI-doped PPy thin film with excellent photocatalytic property at visible light. Polymer Bulletin, 2019, 76, 5213-5231.	3.3	9
11	Electrospun 3D CNF–SiO2 fabricated using non-biodegradable silica gel as prospective anode for lithium–ion batteries. Ionics, 2019, 25, 5305-5313.	2.4	15
12	Li and Mn-rich Li4Mn5O12–Li2MnO3 composite cathode for next generation lithium-ion batteries. Journal of Energy Storage, 2019, 24, 100754.	8.1	15
13	g-C3N4 doped MnS as high performance electrode material for supercapacitor application. Materials Letters, 2019, 246, 88-91.	2.6	36
14	Spherical LiZnBO3: Structural, optical and electrochemical properties. Materials Science for Energy Technologies, 2019, 2, 267-271.	1.8	2
15	LiMn 0.5 Co 0.5 BO 3 solid solution: Towards high performance cathode material for next-generation lithium-ion battery. International Journal of Hydrogen Energy, 2018, 43, 4108-4114.	7.1	3
16	Enhanced electrochemical performance of LiCoBO3 cathode material for next generation Lithium-ion batteries. Applied Surface Science, 2018, 449, 421-425.	6.1	8
17	Origin of defect related green emission in rod shaped ZnO synthesized by eco friendly approach. Optik, 2018, 171, 210-216.	2.9	4
18	Enhanced electrochemical performance of LiMnBO3 with conductive glassy phase: a prospective cathode material for lithium-ion battery. Ionics, 2017, 23, 1645-1653.	2.4	16

Veena Ragupathi

#	Article	IF	CITATIONS
19	Electrochemical Performance of Sol-Gel Derived Hexagonal LiMnBO ₃ Cathode Material for Lithium-Ion Batteries. Nano Hybrids and Composites, 2017, 17, 106-112.	0.8	2
20	Synthesis and Morphological Influence on High Capacity LiMnBO3 Cathode Material for New Generation Lithium Ion Batteries. ECS Transactions, 2014, 62, 123-128.	0.5	2
21	Toward p-type conduction in Cs-doped ZnO: an eco-friendly synthesis method. Journal of Materials Science, 2014, 49, 7418-7424.	3.7	5