
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7061185/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature, 1998, 393, 648-659.	13.7	2,788
2	The β-Chemokine Receptors CCR3 and CCR5 Facilitate Infection by Primary HIV-1 Isolates. Cell, 1996, 85, 1135-1148.	13.5	2,432
3	The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry. Nature, 1996, 382, 829-833.	13.7	1,958
4	The cytoplasmic body component TRIM5α restricts HIV-1 infection in Old World monkeys. Nature, 2004, 427, 848-853.	13.7	1,681
5	The HIV-1 Envelope Glycoproteins: Fusogens, Antigens, and Immunogens. Science, 1998, 280, 1884-1888.	6.0	1,421
6	Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike. Nature, 2020, 584, 450-456.	13.7	1,337
7	CD4-induced interaction of primary HIV-1 gp120 glycoproteins with the chemokine receptor CCR-5. Nature, 1996, 384, 179-183.	13.7	1,224
8	The antigenic structure of the HIV gp120 envelope glycoprotein. Nature, 1998, 393, 705-711.	13.7	1,152
9	Structural Basis for Broad and Potent Neutralization of HIV-1 by Antibody VRC01. Science, 2010, 329, 811-817.	6.0	1,050
10	CCR3 and CCR5 are co-receptors for HIV-1 infection of microglia. Nature, 1997, 385, 645-649.	13.7	945
11	Role of the HTLV-III/LAV envelope in syncytium formation and cytopathicity. Nature, 1986, 322, 470-474.	13.7	914
12	HIV-1 evades antibody-mediated neutralization through conformational masking of receptor-binding sites. Nature, 2002, 420, 678-682.	13.7	832
13	A Conserved HIV gp120 Glycoprotein Structure Involved in Chemokine Receptor Binding. Science, 1998, 280, 1949-1953.	6.0	819
14	A second post-transcriptional trans-activator gene required for HTLV-III replication. Nature, 1986, 321, 412-417.	13.7	791
15	HIV vaccine design and the neutralizing antibody problem. Nature Immunology, 2004, 5, 233-236.	7.0	721
16	Structural definition of a conserved neutralization epitope on HIV-1 gp120. Nature, 2007, 445, 732-737.	13.7	715
17	Structure of a V3-Containing HIV-1 gp120 Core. Science, 2005, 310, 1025-1028.	6.0	696
18	Tyrosine Sulfation of the Amino Terminus of CCR5 Facilitates HIV-1 Entry. Cell, 1999, 96, 667-676.	13.5	658

#	Article	IF	CITATIONS
19	Specific recognition and accelerated uncoating of retroviral capsids by the TRIM5Â restriction factor. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5514-5519.	3.3	653
20	Functional association of cyclophilin A with HIV-1 virions. Nature, 1994, 372, 363-365.	13.7	650
21	A soluble CD4 protein selectively inhibits HIV replication and syncytium formation. Nature, 1988, 331, 78-81.	13.7	468
22	Post-transcriptional regulation accounts for the trans-activation of the human T-lymphotropic virus type III. Nature, 1986, 319, 555-559.	13.7	397
23	Flexible Use of Nuclear Import Pathways by HIV-1. Cell Host and Microbe, 2010, 7, 221-233.	5.1	396
24	Analysis of a Clonal Lineage of HIV-1 Envelope V2/V3 Conformational Epitope-Specific Broadly Neutralizing Antibodies and Their Inferred Unmutated Common Ancestors. Journal of Virology, 2011, 85, 9998-10009.	1.5	393
25	Structures of the CCR5 N Terminus and of a Tyrosine-Sulfated Antibody with HIV-1 gp120 and CD4. Science, 2007, 317, 1930-1934.	6.0	379
26	Structures of HIV-1 gp120 Envelope Glycoproteins from Laboratory-Adapted and Primary Isolates. Structure, 2000, 8, 1329-1339.	1.6	358
27	Species-Specific Variation in the B30.2(SPRY) Domain of TRIM5α Determines the Potency of Human Immunodeficiency Virus Restriction. Journal of Virology, 2005, 79, 3139-3145.	1.5	348
28	Access of Antibody Molecules to the Conserved Coreceptor Binding Site on Glycoprotein gp120 Is Sterically Restricted on Primary Human Immunodeficiency Virus Type 1. Journal of Virology, 2003, 77, 10557-10565.	1.5	343
29	Identification of a protein encoded by the vpu gene of HIV-1. Nature, 1988, 334, 532-534.	13.7	330
30	Structure of HIV-1 gp120 with gp41-interactive region reveals layered envelope architecture and basis of conformational mobility. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1166-1171.	3.3	304
31	The challenges of eliciting neutralizing antibodies to HIV-1 and to influenza virus. Nature Reviews Microbiology, 2008, 6, 143-155.	13.6	298
32	CD4-Induced Conformational Changes in the Human Immunodeficiency Virus Type 1 gp120 Glycoprotein: Consequences for Virus Entry and Neutralization. Journal of Virology, 1998, 72, 4694-4703.	1.5	278
33	Structural Basis of Immune Evasion at the Site of CD4 Attachment on HIV-1 gp120. Science, 2009, 326, 1123-1127.	6.0	271
34	TRIM5Â mediates the postentry block to N-tropic murine leukemia viruses in human cells. Proceedings of the United States of America, 2004, 101, 11827-11832.	3.3	268
35	Highly Stable Trimers Formed by Human Immunodeficiency Virus Type 1 Envelope Glycoproteins Fused with the Trimeric Motif of T4 Bacteriophage Fibritin. Journal of Virology, 2002, 76, 4634-4642.	1.5	261
36	Oligomeric Modeling and Electrostatic Analysis of the gp120 Envelope Glycoprotein of Human Immunodeficiency Virus. Journal of Virology, 2000, 74, 1961-1972.	1.5	248

#	Article	IF	CITATIONS
37	Small-molecule inhibitors of HIV-1 entry block receptor-induced conformational changes in the viral envelope glycoproteins. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 5036-5041.	3.3	247
38	Interaction with Cellular CD4 Exposes HIV-1 Envelope Epitopes Targeted by Antibody-Dependent Cell-Mediated Cytotoxicity. Journal of Virology, 2014, 88, 2633-2644.	1.5	237
39	Species-Specific, Postentry Barriers to Primate Immunodeficiency Virus Infection. Journal of Virology, 1999, 73, 10020-10028.	1.5	235
40	Hexagonal assembly of a restricting TRIM5α protein. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 534-539.	3.3	235
41	Unliganded HIV-1 gp120 core structures assume the CD4-bound conformation with regulation by quaternary interactions and variable loops. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5663-5668.	3.3	222
42	Retrovirus Restriction by TRIM5α Variants from Old World and New World Primates. Journal of Virology, 2005, 79, 3930-3937.	1.5	206
43	Topological Layers in the HIV-1 gp120 Inner Domain Regulate gp41 Interaction and CD4-Triggered Conformational Transitions. Molecular Cell, 2010, 37, 656-667.	4.5	194
44	Improved Elicitation of Neutralizing Antibodies against Primary Human Immunodeficiency Viruses by Soluble Stabilized Envelope Glycoprotein Trimers. Journal of Virology, 2001, 75, 1165-1171.	1.5	189
45	Tyrosine Sulfation of Human Antibodies Contributes to Recognition of the CCR5 Binding Region of HIV-1 gp120. Cell, 2003, 114, 161-170.	13.5	186
46	The B30.2(SPRY) Domain of the Retroviral Restriction Factor TRIM5α Exhibits Lineage-Specific Length and Sequence Variation in Primates. Journal of Virology, 2005, 79, 6111-6121.	1.5	181
47	Mutagenic Stabilization and/or Disruption of a CD4-Bound State Reveals Distinct Conformations of the Human Immunodeficiency Virus Type 1 gp120 Envelope Glycoprotein. Journal of Virology, 2002, 76, 9888-9899.	1.5	177
48	Envelope residue 375 substitutions in simian–human immunodeficiency viruses enhance CD4 binding and replication in rhesus macaques. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3413-22.	3.3	170
49	Characterization of Stable, Soluble Trimers Containing Complete Ectodomains of Human Immunodeficiency Virus Type 1 Envelope Glycoproteins. Journal of Virology, 2000, 74, 5716-5725.	1.5	169
50	Increased Neutralization Sensitivity of CD4-Independent Human Immunodeficiency Virus Variants. Journal of Virology, 2001, 75, 2041-2050.	1.5	168
51	Loss of a Single N-Linked Glycan Allows CD4-Independent Human Immunodeficiency Virus Type 1 Infection by Altering the Position of the gp120 V1/V2 Variable Loops. Journal of Virology, 2001, 75, 3435-3443.	1.5	162
52	Small-Molecule CD4 Mimics Interact with a Highly Conserved Pocket on HIV-1 gp120. Structure, 2008, 16, 1689-1701.	1.6	160
53	Soluble CD4 and CD4-Mimetic Compounds Inhibit HIV-1 Infection by Induction of a Short-Lived Activated State. PLoS Pathogens, 2009, 5, e1000360.	2.1	157
54	Associating HIV-1 envelope glycoprotein structures with states on theÂvirus observed by smFRET. Nature, 2019, 568, 415-419.	13.7	156

#	Article	IF	CITATIONS
55	Short Communication: Fine Definition of a Conserved CCR5-Binding Region on the Human Immunodeficiency Virus Type 1 Glycoprotein 120. AIDS Research and Human Retroviruses, 2000, 16, 741-749.	0.5	155
56	The Contribution of RING and B-box 2 Domains to Retroviral Restriction Mediated by Monkey TRIM5α. Journal of Biological Chemistry, 2005, 280, 26933-26940.	1.6	155
57	Rapid turnover and polyubiquitylation of the retroviral restriction factor TRIM5. Virology, 2006, 349, 300-315.	1.1	153
58	Thermodynamics of Binding of a Low-Molecular-Weight CD4 Mimetic to HIV-1 gp120â€. Biochemistry, 2006, 45, 10973-10980.	1.2	151
59	Subunit organization of the membrane-bound HIV-1 envelope glycoprotein trimer. Nature Structural and Molecular Biology, 2012, 19, 893-899.	3.6	151
60	Stoichiometry of Envelope Glycoprotein Trimers in the Entry of Human Immunodeficiency Virus Type 1. Journal of Virology, 2005, 79, 12132-12147.	1.5	149
61	A B-Box 2 Surface Patch Important for TRIM5α Self-Association, Capsid Binding Avidity, and Retrovirus Restriction. Journal of Virology, 2009, 83, 10737-10751.	1.5	145
62	Adaptation of a CCR5-Using, Primary Human Immunodeficiency Virus Type 1 Isolate for CD4-Independent Replication. Journal of Virology, 1999, 73, 8120-8126.	1.5	145
63	HIV-Host Interactions: Implications for Vaccine Design. Cell Host and Microbe, 2016, 19, 292-303.	5.1	143
64	Characterization of CD4-Induced Epitopes on the HIV Type 1 gp120 Envelope Glycoprotein Recognized by Neutralizing Human Monoclonal Antibodies. AIDS Research and Human Retroviruses, 2002, 18, 1207-1217.	0.5	142
65	Human and Simian Immunodeficiency Virus Capsid Proteins Are Major Viral Determinants of Early, Postentry Replication Blocks in Simian Cells. Journal of Virology, 2003, 77, 726-731.	1.5	137
66	Determinants of Human Immunodeficiency Virus Type 1 Envelope Glycoprotein Activation by Soluble CD4 and Monoclonal Antibodies. Journal of Virology, 1998, 72, 6332-6338.	1.5	135
67	Release of gp120 Restraints Leads to an Entry-Competent Intermediate State of the HIV-1 Envelope Glycoproteins. MBio, 2016, 7, .	1.8	131
68	Removal of Arginine 332 Allows Human TRIM5α To Bind Human Immunodeficiency Virus Capsids and To Restrict Infection. Journal of Virology, 2006, 80, 6738-6744.	1.5	129
69	Enhanced Expression, Native Purification, and Characterization of CCR5, a Principal HIV-1 Coreceptor. Journal of Biological Chemistry, 1999, 274, 28745-28750.	1.6	127
70	Localized Changes in the gp120 Envelope Glycoprotein Confer Resistance to Human Immunodeficiency Virus Entry Inhibitors BMS-806 and #155. Journal of Virology, 2004, 78, 3742-3752.	1.5	126
71	The Human TRIM5α Restriction Factor Mediates Accelerated Uncoating of the N-Tropic Murine Leukemia Virus Capsid. Journal of Virology, 2007, 81, 2138-2148.	1.5	125
72	The TRIM5α B-Box 2 Domain Promotes Cooperative Binding to the Retroviral Capsid by Mediating Higher-Order Self-Association. Journal of Virology, 2008, 82, 11495-11502.	1.5	119

#	Article	IF	CITATIONS
73	CD4 mimetics sensitize HIV-1-infected cells to ADCC. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2687-94.	3.3	118
74	Binding and Susceptibility to Postentry Restriction Factors in Monkey Cells Are Specified by Distinct Regions of the Human Immunodeficiency Virus Type 1 Capsid. Journal of Virology, 2004, 78, 5423-5437.	1.5	116
75	Effects of human TRIM5α polymorphisms on antiretroviral function and susceptibility to human immunodeficiency virus infection. Virology, 2006, 354, 15-27.	1.1	116
76	Retroviral Restriction Factor TRIM5Î \pm Is a Trimer. Journal of Virology, 2005, 79, 14446-14450.	1.5	115
77	Contribution of Intrinsic Reactivity of the HIV-1 Envelope Glycoproteins to CD4-Independent Infection and Global Inhibitor Sensitivity. PLoS Pathogens, 2011, 7, e1002101.	2.1	114
78	Decay-accelerating factor (CD55) protects human immunodeficiency virus type 1 from inactivation by human complement. European Journal of Immunology, 1995, 25, 285-290.	1.6	112
79	Biochemical Characterization of a Recombinant TRIM5α Protein That Restricts Human Immunodeficiency Virus Type 1 Replication. Journal of Virology, 2008, 82, 11682-11694.	1.5	112
80	TRIM5α Modulates Immunodeficiency Virus Control in Rhesus Monkeys. PLoS Pathogens, 2010, 6, e1000738.	2.1	112
81	Paramagnetic proteoliposomes containing a pure, native, and oriented seven-transmembrane segment protein, CCR5. Nature Biotechnology, 2000, 18, 649-654.	9.4	111
82	Characterization of TRIM5α trimerization and its contribution to human immunodeficiency virus capsid binding. Virology, 2006, 353, 234-246.	1.1	110
83	Crystal structures of trimeric HIV envelope with entry inhibitors BMS-378806 and BMS-626529. Nature Chemical Biology, 2017, 13, 1115-1122.	3.9	110
84	SARS-CoV-2 neutralizing antibody responses are more robust in patients with severe disease. Emerging Microbes and Infections, 2020, 9, 2091-2093.	3.0	109
85	The Level of CD4 Expression Limits Infection of Primary Rhesus Monkey Macrophages by a T-Tropic Simian Immunodeficiency Virus and Macrophagetropic Human Immunodeficiency Viruses. Journal of Virology, 2000, 74, 10984-10993.	1.5	108
86	Scorpion-Toxin Mimics of CD4 in Complex with Human Immunodeficiency Virus gp120. Structure, 2005, 13, 755-768.	1.6	107
87	The Envelope Glycoprotein Ectodomains Determine the Efficiency of CD4+ T Lymphocyte Depletion in Simian– Human Immunodeficiency Virus–Infected Macaques. Journal of Experimental Medicine, 1998, 188, 1159-1171.	4.2	106
88	Probability Analysis of Variational Crystallization and Its Application to gp120, The Exterior Envelope Glycoprotein of Type 1 Human Immunodeficiency Virus (HIV-1). Journal of Biological Chemistry, 1999, 274, 4115-4123.	1.6	106
89	Envelope Glycoprotein Determinants of Increased Fusogenicity in a Pathogenic Simian-Human Immunodeficiency Virus (SHIV-KB9) Passaged In Vivo. Journal of Virology, 2000, 74, 4433-4440.	1.5	101
90	Characterization of Human Immunodeficiency Virus Type 1 Monomeric and Trimeric gp120 Glycoproteins Stabilized in the CD4-Bound State: Antigenicity, Biophysics, and Immunogenicity. Journal of Virology, 2007, 81, 5579-5593.	1.5	101

#	Article	IF	CITATIONS
91	Molecular architecture of the uncleaved HIV-1 envelope glycoprotein trimer. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12438-12443.	3.3	101
92	Intrinsic Human Immunodeficiency Virus Type 1 Resistance of Hematopoietic Stem Cells Despite Coreceptor Expression. Journal of Virology, 1999, 73, 728-737.	1.5	99
93	Target Cell Type-Dependent Modulation of Human Immunodeficiency Virus Type 1 Capsid Disassembly by Cyclophilin A. Journal of Virology, 2009, 83, 10951-10962.	1.5	99
94	Comparative Analysis of the Glycosylation Profiles of Membrane-Anchored HIV-1 Envelope Glycoprotein Trimers and Soluble gp140. Journal of Virology, 2015, 89, 8245-8257.	1.5	99
95	Structural basis and mode of action for two broadly neutralizing antibodies against SARS-CoV-2 emerging variants of concern. Cell Reports, 2022, 38, 110210.	2.9	96
96	An Asymmetric Opening of HIV-1 Envelope Mediates Antibody-Dependent Cellular Cytotoxicity. Cell Host and Microbe, 2019, 25, 578-587.e5.	5.1	93
97	Comparative requirements for the restriction of retrovirus infection by TRIM5 $\hat{1}$ ± and TRIMCyp. Virology, 2007, 369, 400-410.	1.1	92
98	Structure-Based Design, Synthesis, and Characterization of Dual Hotspot Small-Molecule HIV-1 Entry Inhibitors. Journal of Medicinal Chemistry, 2012, 55, 4382-4396.	2.9	90
99	Solid-Phase Proteoliposomes Containing Human Immunodeficiency Virus Envelope Glycoproteins. Journal of Virology, 2002, 76, 3511-3521.	1.5	88
100	Structure-Based Design, Synthesis and Validation of CD4-Mimetic Small Molecule Inhibitors of HIV-1 Entry: Conversion of a Viral Entry Agonist to an Antagonist. Accounts of Chemical Research, 2014, 47, 1228-1237.	7.6	88
101	The β20–β21 of gp120 is a regulatory switch for HIV-1 Env conformational transitions. Nature Communications, 2017, 8, 1049.	5.8	88
102	Ligand Binding Characteristics of CXCR4 Incorporated into Paramagnetic Proteoliposomes. Journal of Biological Chemistry, 2001, 276, 38433-38440.	1.6	86
103	Requirements for capsid-binding and an effector function in TRIMCyp-mediated restriction of HIV-1. Virology, 2006, 351, 404-419.	1.1	86
104	Small-Molecule CD4-Mimics: Structure-Based Optimization of HIV-1 Entry Inhibition. ACS Medicinal Chemistry Letters, 2016, 7, 330-334.	1.3	86
105	Evolution of a cytoplasmic tripartite motif (TRIM) protein in cows that restricts retroviral infection. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 7454-7459.	3.3	85
106	Mimicry of an HIV broadly neutralizing antibody epitope with a synthetic glycopeptide. Science Translational Medicine, 2017, 9, .	5.8	81
107	Importance of Membrane Fusion Mediated by Human Immunodeficiency Virus Envelope Glycoproteins for Lysis of Primary CD4-Positive T Cells. Journal of Virology, 2000, 74, 10690-10698.	1.5	80
108	Characterization of Primary Isolate-Like Variants of Simian-Human Immunodeficiency Virus. Journal of Virology, 1999, 73, 10199-10207.	1.5	78

#	Article	IF	CITATIONS
109	A broad HIV-1 inhibitor blocks envelope glycoprotein transitions critical for entry. Nature Chemical Biology, 2014, 10, 845-852.	3.9	77
110	Epitope mapping and characterization of a novel CD4-induced human monoclonal antibody capable of neutralizing primary HIV-1 strains. Virology, 2003, 315, 124-134.	1.1	76
111	The impact of envelope glycoprotein cleavage on the antigenicity, infectivity, and neutralization sensitivity of Env-pseudotyped human immunodeficiency virus type 1 particles. Virology, 2005, 338, 154-172.	1.1	76
112	Membrane-Fusing Capacity of the Human Immunodeficiency Virus Envelope Proteins Determines the Efficiency of CD4 + T-Cell Depletion in Macaques Infected by a Simian-Human Immunodeficiency Virus. Journal of Virology, 2001, 75, 5646-5655.	1.5	75
113	Cyclophilin A: An auxiliary but not necessary cofactor for TRIM5α restriction of HIV-1. Virology, 2006, 351, 112-120.	1.1	75
114	Characterization of the Multiple Conformational States of Free Monomeric and Trimeric Human Immunodeficiency Virus Envelope Glycoproteins after Fixation by Cross-Linker. Journal of Virology, 2006, 80, 6725-6737.	1.5	75
115	Recognition of synthetic glycopeptides by HIV-1 broadly neutralizing antibodies and their unmutated ancestors. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18214-18219.	3.3	73
116	Glycosylation Benchmark Profile for HIV-1 Envelope Glycoprotein Production Based on Eleven Env Trimers. Journal of Virology, 2017, 91, .	1.5	73
117	Neutralizing Antibodies in Sera from Macaques Infected with Chimeric Simian-Human Immunodeficiency Virus Containing the Envelope Glycoproteins of either a Laboratory-Adapted Variant or a Primary Isolate of Human Immunodeficiency Virus Type 1. Journal of Virology, 1998, 72, 3427-3431.	1.5	73
118	Modulation of Retroviral Restriction and Proteasome Inhibitor-Resistant Turnover by Changes in the TRIM5α B-Box 2 Domain. Journal of Virology, 2007, 81, 10362-10378.	1.5	72
119	Design, synthesis and biological evaluation of small molecule inhibitors of CD4-gp120 binding based on virtual screening. Bioorganic and Medicinal Chemistry, 2011, 19, 91-101.	1.4	72
120	Proteolytic Processing of the Human Immunodeficiency Virus Envelope Glycoprotein Precursor Decreases Conformational Flexibility. Journal of Virology, 2013, 87, 1884-1889.	1.5	71
121	Spike Glycoprotein and Host Cell Determinants of SARS-CoV-2 Entry and Cytopathic Effects. Journal of Virology, 2021, 95, .	1.5	70
122	Stabilization of Human Immunodeficiency Virus Type 1 Envelope Glycoprotein Trimers by Disulfide Bonds Introduced into the gp41 Glycoprotein Ectodomain. Journal of Virology, 1998, 72, 7620-7625.	1.5	70
123	Subunit Stoichiometry of Human Immunodeficiency Virus Type 1 Envelope Glycoprotein Trimers during Virus Entry into Host Cells. Journal of Virology, 2006, 80, 4388-4395.	1.5	68
124	Soluble Mimetics of Human Immunodeficiency Virus Type 1 Viral Spikes Produced by Replacement of the Native Trimerization Domain with aHeterologous Trimerization Motif: Characterization and Ligand Binding Analysis. Journal of Virology, 2005, 79, 9954-9969.	1.5	67
125	A human TRIM5α B30.2/SPRY domain mutant gains the ability to restrict and prematurely uncoat B-tropic murine leukemia virus. Virology, 2008, 378, 233-242.	1.1	67
126	Small CD4 Mimetics Prevent HIV-1 Uninfected Bystander CD4 + T Cell Killing Mediated by Antibody-dependent Cell-mediated Cytotoxicity. EBioMedicine, 2016, 3, 122-134.	2.7	67

#	Article	IF	CITATIONS
127	Strain-Specific V3 and CD4 Binding Site Autologous HIV-1 Neutralizing Antibodies Select Neutralization-Resistant Viruses. Cell Host and Microbe, 2015, 18, 354-362.	5.1	66
128	The Conformational States of the HIV-1 Envelope Glycoproteins. Trends in Microbiology, 2020, 28, 655-667.	3.5	66
129	Characterization of the Outer Domain of the gp120 Glycoprotein from Human Immunodeficiency Virus Type 1. Journal of Virology, 2004, 78, 12975-12986.	1.5	65
130	Co-receptor Binding Site Antibodies Enable CD4-Mimetics to Expose Conserved Anti-cluster A ADCC Epitopes on HIV-1 Envelope Glycoproteins. EBioMedicine, 2016, 12, 208-218.	2.7	65
131	Unique features of TRIM5α among closely related human TRIM family members. Virology, 2007, 360, 419-433.	1.1	64
132	A V3 Loop-Dependent gp120 Element Disrupted by CD4 Binding Stabilizes the Human Immunodeficiency Virus Envelope Glycoprotein Trimer. Journal of Virology, 2010, 84, 3147-3161.	1.5	64
133	Biochemical and Biophysical Characterization of a Chimeric TRIM21-TRIM5α Protein. Journal of Virology, 2008, 82, 11669-11681.	1.5	63
134	Chemical Synthesis of Highly Congested gp120 V1V2 <i>N</i> -Glycopeptide Antigens for Potential HIV-1-Directed Vaccines. Journal of the American Chemical Society, 2013, 135, 13113-13120.	6.6	60
135	Determinants of Neutralization Resistance in the Envelope Glycoproteins of a Simian-Human Immunodeficiency Virus Passaged In Vivo. Journal of Virology, 1999, 73, 8873-8879.	1.5	59
136	CD4-Induced T-20 Binding to Human Immunodeficiency Virus Type 1 gp120 Blocks Interaction with the CXCR4 Coreceptor. Journal of Virology, 2004, 78, 5448-5457.	1.5	58
137	Transitions to and from the CD4-Bound Conformation Are Modulated by a Single-Residue Change in the Human Immunodeficiency Virus Type 1 gp120 Inner Domain. Journal of Virology, 2009, 83, 8364-8378.	1.5	57
138	High-Mannose Glycan-Dependent Epitopes Are Frequently Targeted in Broad Neutralizing Antibody Responses during Human Immunodeficiency Virus Type 1 Infection. Journal of Virology, 2012, 86, 2153-2164.	1.5	57
139	Analysis of the Interaction of Antibodies with a Conserved, Enzymatically Deglycosylated Core of the HIV Type 1 Envelope Glycoprotein 120. AIDS Research and Human Retroviruses, 1998, 14, 191-198.	0.5	56
140	Structure-Based Design and Synthesis of an HIV-1 Entry Inhibitor Exploiting X-ray and Thermodynamic Characterization. ACS Medicinal Chemistry Letters, 2013, 4, 338-343.	1.3	56
141	Role of the gp120 inner domain β-sandwich in the interaction between the human immunodeficiency virus envelope glycoprotein subunits. Virology, 2003, 313, 117-125.	1.1	55
142	Determinants of the Higher Order Association of the Restriction Factor TRIM5α and Other Tripartite Motif (TRIM) Proteins. Journal of Biological Chemistry, 2011, 286, 27959-27970.	1.6	55
143	CD4-Mimetic Small Molecules Sensitize Human Immunodeficiency Virus to Vaccine-Elicited Antibodies. Journal of Virology, 2014, 88, 6542-6555.	1.5	55
144	Antibody-Dependent Cellular Cytotoxicity against Reactivated HIV-1-Infected Cells. Journal of Virology, 2016, 90, 2021-2030.	1.5	53

#	Article	IF	CITATIONS
145	Residues in the gp41 Ectodomain Regulate HIV-1 Envelope Glycoprotein Conformational Transitions Induced by gp120-Directed Inhibitors. Journal of Virology, 2017, 91, .	1.5	53
146	Effects of the I559P gp41 Change on the Conformation and Function of the Human Immunodeficiency Virus (HIV-1) Membrane Envelope Glycoprotein Trimer. PLoS ONE, 2015, 10, e0122111.	1.1	52
147	Influence of the Envelope gp120 Phe 43 Cavity on HIV-1 Sensitivity to Antibody-Dependent Cell-Mediated Cytotoxicity Responses. Journal of Virology, 2017, 91, .	1.5	52
148	TRIM5α association with cytoplasmic bodies is not required for antiretroviral activity. Virology, 2005, 343, 201-211.	1.1	51
149	Identification of a Human Immunodeficiency Virus Type 1 Envelope Glycoprotein Variant Resistant to Cold Inactivation. Journal of Virology, 2009, 83, 4476-4488.	1.5	50
150	Lattice engineering enables definition of molecular features allowing for potent small-molecule inhibition of HIV-1 entry. Nature Communications, 2019, 10, 47.	5.8	50
151	Effects of HIV Type 1 Envelope Glycoprotein Proteolytic Processing on Antigenicity. AIDS Research and Human Retroviruses, 2003, 19, 217-226.	O.5	49
152	An Unrelated Monoclonal Antibody Neutralizes Human Immunodeficiency Virus Type 1 by Binding to an Artificial Epitope Engineered in a Functionally Neutral Region of the Viral Envelope Glycoproteins. Journal of Virology, 2005, 79, 5616-5624.	1.5	49
153	The Highly Conserved Layer-3 Component of the HIV-1 gp120 Inner Domain Is Critical for CD4-Required Conformational Transitions. Journal of Virology, 2013, 87, 2549-2562.	1.5	49
154	Two Surface-Exposed Elements of the B30.2/SPRY Domain as Potency Determinants of N-Tropic Murine Leukemia Virus Restriction by Human TRIM5α. Journal of Virology, 2006, 80, 5631-5636.	1.5	48
155	Functional Replacement of the RING, B-Box 2, and Coiled-Coil Domains of Tripartite Motif 5α (TRIM5α) by Heterologous TRIM Domains. Journal of Virology, 2006, 80, 6198-6206.	1.5	48
156	Localization to detergent-resistant membranes and HIV-1 core entry inhibition correlate with HIV-1 restriction by SERINC5. Virology, 2018, 515, 52-65.	1.1	47
157	Antibody 17b Binding at the Coreceptor Site Weakens the Kinetics of the Interaction of Envelope Glycoprotein gp120 with CD4â€. Biochemistry, 2001, 40, 1662-1670.	1.2	46
158	Modeling Virus- and Antibody-Specific Factors to Predict Human Immunodeficiency Virus Neutralization Efficiency. Cell Host and Microbe, 2013, 14, 547-558.	5.1	46
159	A CD4-mimetic compound enhances vaccine efficacy against stringent immunodeficiency virus challenge. Nature Communications, 2018, 9, 2363.	5.8	46
160	The ability of multimerized cyclophilin A to restrict retrovirus infection. Virology, 2007, 367, 19-29.	1.1	45
161	Structural Determinants for Affinity Enhancement of a Dual Antagonist Peptide Entry Inhibitor of Human Immunodeficiency Virus Type-1. Journal of Medicinal Chemistry, 2008, 51, 2638-2647.	2.9	45
162	Antibody Binding Is a Dominant Determinant of the Efficiency of Human Immunodeficiency Virus Type 1 Neutralization. Journal of Virology, 2006, 80, 11404-11408.	1.5	44

#	Article	IF	CITATIONS
163	Activation and Inactivation of Primary Human Immunodeficiency Virus Envelope Glycoprotein Trimers by CD4-Mimetic Compounds. Journal of Virology, 2017, 91, .	1.5	42
164	BST-2 Expression Modulates Small CD4-Mimetic Sensitization of HIV-1-Infected Cells to Antibody-Dependent Cellular Cytotoxicity. Journal of Virology, 2017, 91, .	1.5	40
165	Comparison of Uncleaved and Mature Human Immunodeficiency Virus Membrane Envelope Glycoprotein Trimers. Journal of Virology, 2018, 92, .	1.5	40
166	Antibodies Elicited by Multiple Envelope Glycoprotein Immunogens in Primates Neutralize Primary Human Immunodeficiency Viruses (HIV-1) Sensitized by CD4-Mimetic Compounds. Journal of Virology, 2016, 90, 5031-5046.	1.5	38
167	The HIV-1 Env gp120 Inner Domain Shapes the Phe43 Cavity and the CD4 Binding Site. MBio, 2020, 11, .	1.8	37
168	Folding DNA into a Lipid onjugated Nanobarrel for Controlled Reconstitution of Membrane Proteins. Angewandte Chemie - International Edition, 2018, 57, 2072-2076.	7.2	36
169	Functional interplay between the B-box 2 and the B30.2(SPRY) domains of TRIM5α. Virology, 2007, 366, 234-244.	1.1	35
170	Conformational characterization of aberrant disulfide-linked HIV-1 gp120 dimers secreted from overexpressing cells. Journal of Virological Methods, 2010, 168, 155-161.	1.0	35
171	Functional Mimicry of a Human Immunodeficiency Virus Type 1 Coreceptor by a Neutralizing Monoclonal Antibody. Journal of Virology, 2005, 79, 6068-6077.	1.5	34
172	Amino Acid Changes in the HIV-1 gp41 Membrane Proximal Region Control Virus Neutralization Sensitivity. EBioMedicine, 2016, 12, 196-207.	2.7	34
173	Epitopes for broad and potent neutralizing antibody responses during chronic infection with human immunodeficiency virus type 1. Virology, 2010, 396, 339-348.	1.1	33
174	An Inducible Cell-Cell Fusion System with Integrated Ability to Measure the Efficiency and Specificity of HIV-1 Entry Inhibitors. PLoS ONE, 2011, 6, e26731.	1.1	32
175	Role of TRIM5α RING Domain E3 Ubiquitin Ligase Activity in Capsid Disassembly, Reverse Transcription Blockade, and Restriction of Simian Immunodeficiency Virus. Journal of Virology, 2011, 85, 8116-8132.	1.5	31
176	Adaptation of HIV-1 to cells expressing rhesus monkey TRIM5α. Virology, 2010, 408, 204-212.	1.1	30
177	Lineage-Specific Differences between Human and Simian Immunodeficiency Virus Regulation of gp120 Trimer Association and CD4 Binding. Journal of Virology, 2012, 86, 8974-8986.	1.5	30
178	Contribution of PDZD8 to Stabilization of the Human Immunodeficiency Virus Type 1 Capsid. Journal of Virology, 2014, 88, 4612-4623.	1.5	30
179	CD4 Incorporation into HIV-1 Viral Particles Exposes Envelope Epitopes Recognized by CD4-Induced Antibodies. Journal of Virology, 2019, 93, .	1.5	29
180	Modulating HIV-1 envelope glycoprotein conformation to decrease the HIV-1 reservoir. Cell Host and Microbe, 2021, 29, 904-916.e6.	5.1	29

JOSEPH G SODROSKI

#	Article	IF	CITATIONS
181	Long-Acting BMS-378806 Analogues Stabilize the State-1 Conformation of the Human Immunodeficiency Virus Type 1 Envelope Glycoproteins. Journal of Virology, 2020, 94, .	1.5	27
182	Identification of Membrane Anchorage Domains of the HIV-1 gp160 Envelope Glycoprotein Precursor. Journal of Acquired Immune Deficiency Syndromes (1999), 1991, 4, 34???40.	0.9	26
183	CD4 Binding Site Antibodies Inhibit Human Immunodeficiency Virus gp120 Envelope Glycoprotein Interaction with CCR5. Journal of Virology, 2003, 77, 713-718.	1.5	26
184	Short Communication: Small-Molecule CD4 Mimetics Sensitize HIV-1-Infected Cells to Antibody-Dependent Cellular Cytotoxicity by Antibodies Elicited by Multiple Envelope Glycoprotein Immunogens in Nonhuman Primates. AIDS Research and Human Retroviruses, 2017, 33, 428-431.	0.5	26
185	A New Family of Small-Molecule CD4-Mimetic Compounds Contacts Highly Conserved Aspartic Acid 368 of HIV-1 gp120 and Mediates Antibody-Dependent Cellular Cytotoxicity. Journal of Virology, 2019, 93, .	1.5	26
186	Dual Pathways of Human Immunodeficiency Virus Type 1 Envelope Glycoprotein Trafficking Modulate the Selective Exclusion of Uncleaved Oligomers from Virions. Journal of Virology, 2021, 95, .	1.5	26
187	Infection of monkeys by simian-human immunodeficiency viruses with transmitted/founder clade C HIV-1 envelopes. Virology, 2015, 475, 37-45.	1.1	25
188	Trafficking of some old world primate TRIM5α proteins through the nucleus. Retrovirology, 2011, 8, 38.	0.9	24
189	SOSIP Changes Affect Human Immunodeficiency Virus Type 1 Envelope Glycoprotein Conformation and CD4 Engagement. Journal of Virology, 2018, 92, .	1.5	24
190	Analysis of Glycosylation and Disulfide Bonding of Wild-Type SARS-CoV-2 Spike Glycoprotein. Journal of Virology, 2022, 96, JVI0162621.	1.5	24
191	Efficient human immunodeficiency virus (HIV-1) infection of cells lacking PDZD8. Virology, 2015, 481, 73-78.	1.1	22
192	A Small-Molecule CD4-Mimetic Compound Protects Bone Marrow–Liver–Thymus Humanized Mice From HIV-1 Infection. Journal of Infectious Diseases, 2018, 218, 471-475.	1.9	22
193	Conformational Differences between Functional Human Immunodeficiency Virus Envelope Glycoprotein Trimers and Stabilized Soluble Trimers. Journal of Virology, 2019, 93, .	1.5	22
194	Virus-Specific Effects of TRIM5Ârh RING Domain Functions on Restriction of Retroviruses. Journal of Virology, 2013, 87, 7234-7245.	1.5	21
195	Shedding-Resistant HIV-1 Envelope Glycoproteins Adopt Downstream Conformations That Remain Responsive to Conformation-Preferring Ligands. Journal of Virology, 2020, 94, .	1.5	21
196	Characterization of a core fragment of the rhesus monkey TRIM5 \hat{I} ± protein. BMC Biochemistry, 2011, 12, 1.	4.4	20
197	The HIV-1 gp120 Major Variable Regions Modulate Cold Inactivation. Journal of Virology, 2013, 87, 4103-4111.	1.5	20
198	Asymmetric Structures and Conformational Plasticity of the Uncleaved Full-Length Human Immunodeficiency Virus Envelope Glycoprotein Trimer. Journal of Virology, 2021, 95, e0052921.	1.5	20

#	Article	IF	CITATIONS
199	Functional properties of the spike glycoprotein of the emerging SARS-CoV-2 variant B.1.1.529. Cell Reports, 2022, 39, 110924.	2.9	20
200	Reply to Subramaniam, van Heel, and Henderson: Validity of the cryo-electron microscopy structures of the HIV-1 envelope glycoprotein complex. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4178-82.	3.3	19
201	A Twin-Cysteine Motif in the V2 Region of gp120 Is Associated with SIV Envelope Trimer Stabilization. PLoS ONE, 2013, 8, e69406.	1.1	19
202	Functional differences among the spike glycoproteins of multiple emerging severe acute respiratory syndrome coronavirus 2 variants of concern. IScience, 2021, 24, 103393.	1.9	17
203	The Selection of Low Envelope Glycoprotein Reactivity to Soluble CD4 and Cold during Simian-Human Immunodeficiency Virus Infection of Rhesus Macaques. Journal of Virology, 2014, 88, 21-40.	1.5	16
204	Understanding the basis of CD4+ T-cell depletion in macaques infected by a simian–human immunodeficiency virus. Vaccine, 2002, 20, 1934-1937.	1.7	15
205	Opening the HIV envelope: potential of CD4 mimics as multifunctional HIV entry inhibitors. Current Opinion in HIV and AIDS, 2020, 15, 300-308.	1.5	15
206	Slow Receptor Binding of the Noncytopathic HIV-2UC1 Envs Is Balanced by Long-Lived Activation State and Efficient Fusion Activity. Cell Reports, 2020, 31, 107749.	2.9	14
207	Blocking HIV-1 Infection by Chromosomal Integrative Expression of Human CD4 on the Surface of Lactobacillus acidophilus ATCC 4356. Journal of Virology, 2019, 93, .	1.5	13
208	Functional and Highly Cross-Linkable HIV-1 Envelope Glycoproteins Enriched in a Pretriggered Conformation. Journal of Virology, 2022, 96, e0166821.	1.5	13
209	Global Increases in Human Immunodeficiency Virus Neutralization Sensitivity Due to Alterations in the Membrane-Proximal External Region of the Envelope Glycoprotein Can Be Minimized by Distant State 1-Stabilizing Changes. Journal of Virology, 2022, 96, e0187821.	1.5	13
210	Visualization of HIV-1 RNA Transcription from Integrated HIV-1 DNA in Reactivated Latently Infected Cells. Viruses, 2018, 10, 534.	1.5	12
211	Characterization of a dual-tropic Human immunodeficiency virus (HIV-1) strain derived from the prototypical X4 isolate HXBc2. Virology, 2013, 438, 5-13.	1.1	11
212	Evaluation of the contribution of the transmembrane region to the ectodomain conformation of the human immunodeficiency virus (HIV-1) envelope glycoprotein. Virology Journal, 2017, 14, 33.	1.4	11
213	Folding DNA into a Lipidâ€Conjugated Nanobarrel for Controlled Reconstitution of Membrane Proteins. Angewandte Chemie, 2018, 130, 2094-2098.	1.6	11
214	Contribution of the gp120 V3 loop to envelope glycoprotein trimer stability in primate immunodeficiency viruses. Virology, 2018, 521, 158-168.	1.1	11
215	Intra- and extra-cellular environments contribute to the fate of HIV-1 infection. Cell Reports, 2021, 36, 109622.	2.9	11
216	Induction of a Tier-1-Like Phenotype in Diverse Tier-2 Isolates by Agents That Guide HIV-1 Env to Perturbation-Sensitive, Nonnative States. Journal of Virology, 2017, 91, .	1.5	10

#	Article	IF	CITATIONS
217	Antigenic characterization of the human immunodeficiency virus (HIV-1) envelope glycoprotein precursor incorporated into nanodiscs. PLoS ONE, 2017, 12, e0170672.	1.1	10
218	Effects of the SOS (A501C/T605C) and DS (I201C/A433C) Disulfide Bonds on HIV-1 Membrane Envelope Glycoprotein Conformation and Function. Journal of Virology, 2019, 93, .	1.5	9
219	Thermal Stability of the Human Immunodeficiency Virus Type 1 (HIV-1) Receptors, CD4 and CXCR4, Reconstituted in Proteoliposomes. PLoS ONE, 2010, 5, e13249.	1.1	8
220	Identification of gp120 Residue His105 as a Novel Target for HIV-1 Neutralization by Small-Molecule CD4-Mimics. ACS Medicinal Chemistry Letters, 2021, 12, 1824-1831.	1.3	8
221	Adaptation of HIV-1 to cells with low expression of the CCR5 coreceptor. Virology, 2017, 508, 90-107.	1.1	7
222	An Entry-Competent Intermediate State of the HIV-1 Envelope Glycoproteins. Receptors & Clinical Investigation, 2017, 4, .	0.9	7
223	A rare null allele potentially encoding a dominant-negative TRIM5α protein in Baka pygmies. Virology, 2009, 391, 140-147.	1.1	6
224	Enhanced Autointegration in Hyperstable Simian Immunodeficiency Virus Capsid Mutants Blocked after Reverse Transcription. Journal of Virology, 2013, 87, 3628-3639.	1.5	6
225	Characterization of two distinct early post-entry blocks to HIV-1 in common marmoset lymphocytes. Scientific Reports, 2016, 6, 37489.	1.6	6
226	The opportunity cost of automated glycopeptide analysis: case study profiling the SARS-CoV-2 S glycoprotein. Analytical and Bioanalytical Chemistry, 2021, 413, 7215-7227.	1.9	6
227	Antigenicity and Immunogenicity of HIV-1 Envelope Trimers Complexed to a Small-Molecule Viral Entry Inhibitor. Journal of Virology, 2020, 94, .	1.5	5
228	Structure of BMS-806, a Small-molecule HIV-1 Entry Inhibitor, Bound to BG505 SOSIP.664 HIV-1 Env Trimer. AIDS Research and Human Retroviruses, 2014, 30, A151-A151.	0.5	4
229	HIV-1 Adapts To Replicate in Cells Expressing Common Marmoset APOBEC3G and BST2. Journal of Virology, 2016, 90, 725-740.	1.5	4
230	Robustness of signal detection in cryo-electron microscopy via a bi-objective-function approach. BMC Bioinformatics, 2019, 20, 169.	1.2	4
231	Contribution of Glutamine Residues in the Helix 4-5 Loop to Capsid-Capsid Interactions in Simian Immunodeficiency Virus of Macaques. Journal of Virology, 2014, 88, 10289-10302.	1.5	3
232	Gp41-targeted antibodies restore infectivity of a fusion-deficient HIV-1 envelope glycoprotein. PLoS Pathogens, 2020, 16, e1008577.	2.1	3
233	Basic and Translational Research of Chemokine Ligands and Receptors and Development of Novel Therapeutics. , 0, , 300-335.		2
234	Strain-Dependent Activation and Inhibition of Human Immunodeficiency Virus Entry by a Specific PF-68742 Stereoisomer. Journal of Virology, 2019, 93, .	1.5	1

#	Article	IF	CITATIONS
235	Frontispiz: Folding DNA into a Lipidâ€Conjugated Nanobarrel for Controlled Reconstitution of Membrane Proteins. Angewandte Chemie, 2018, 130, .	1.6	0
236	Frontispiece: Folding DNA into a Lipidâ€Conjugated Nanobarrel for Controlled Reconstitution of Membrane Proteins. Angewandte Chemie - International Edition, 2018, 57, .	7.2	0
237	540. Investigating the Mechanism of a Unique Human Immunodeficiency Virus-1 (HIV-1) Entry Inhibitor, MF275. Open Forum Infectious Diseases, 2018, 5, S200-S201.	0.4	Ο
238	A Novel Synthetic Chemokine Containing D-Amino Acids That Binds to the CXCR4 Receptor and Inhibits HIV-1 Infection Blood, 2004, 104, 603-603.	0.6	0
239	Innate intracellular immunity to retroviruses. Harvey Lectures, 2004, 100, 143-53.	0.2	0
240	Gp41-targeted antibodies restore infectivity of a fusion-deficient HIV-1 envelope glycoprotein. , 2020, 16, e1008577.		0
241	Gp41-targeted antibodies restore infectivity of a fusion-deficient HIV-1 envelope glycoprotein. , 2020, 16, e1008577.		Ο
242	Gp41-targeted antibodies restore infectivity of a fusion-deficient HIV-1 envelope glycoprotein. , 2020, 16, e1008577.		0
243	Gp41-targeted antibodies restore infectivity of a fusion-deficient HIV-1 envelope glycoprotein. , 2020, 16, e1008577.		0