Clara Morita-Imura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7061078/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Preparing Alumina-Supported Gold Nanowires for Alcohol Oxidation. ACS Omega, 2021, 6, 16043-16048.	1.6	11
2	Preparation and Catalytic Performance of Highly Stable Silica-Coated Gold Nanorods Supported on Alumina. Bulletin of the Chemical Society of Japan, 2021, 94, 1685-1689.	2.0	2
3	Magnetic Fe ₃ O ₄ -Supported Gold Nanoflowers with Lattice-Selected Surfaces: Preparation and Catalytic Performance. ACS Omega, 2020, 5, 15755-15760.	1.6	6
4	Advantages of Stimuli-responsive Surfactant Gel for Removal of Nanomaterials from Water. Oleoscience, 2020, 20, 431-437.	0.0	0
5	Water-Oil Phase Transfer and Fractionation of pH-Responsive Gold Nanocrystals. Journal of the Japan Society of Colour Material, 2020, 93, 205-209.	0.0	Ο
6	Morphological Stability and Catalytic Performance of Supported and Unsupported Dendritic Gold Nanowire Catalysts. ChemistrySelect, 2019, 4, 9908-9914.	0.7	1
7	Ion-selective molecular inclusion of organic dyes into pH-responsive gel assemblies of zwitterionic surfactants. New Journal of Chemistry, 2019, 43, 8465-8471.	1.4	5
8	Effect of the Air/Water Interfacial Properties of Amine Derivatives on the in Situ Fabrication of Microsized Gold Sheets. Langmuir, 2019, 35, 4029-4036.	1.6	1
9	Au–Ag Nanoflower Catalysts with Clean Surfaces for Alcohol Oxidation. Chemistry - an Asian Journal, 2019, 14, 547-552.	1.7	12
10	Preparation and length control of water-dispersible ultrathin gold and silver bimetallic nanowires. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 543, 9-14.	2.3	12
11	Preparation and Reconstruction of Long Branched Palladium Nanowires Exhibiting High Catalytic Activities. ChemistrySelect, 2018, 3, 13387-13390.	0.7	2
12	High Stability and Catalytic Activity of Supported Anisotropic Gold Nanocrystals. Journal of the Japan Society of Colour Material, 2018, 91, 132-136.	0.0	0
13	Approaches for the Recovery of Noble-Metal Nanoparticles. Journal of the Japan Society of Colour Material, 2018, 91, 227-232.	0.0	Ο
14	Highly Stable Silica-Coated Gold Nanoflowers Supported on Alumina. Langmuir, 2017, 33, 4313-4318.	1.6	22
15	pHâ€Responsive Supported and Unsupported Gold Nanocrystals. ChemistrySelect, 2017, 2, 5695-5700.	0.7	5
16	Ion-specific Effect on Oil-in-water Emulsion Gels Containing a Stimuli-responsive Fibrous Assembly of Amidoamine-derivative Hydrogelator. Journal of Oleo Science, 2016, 65, 985-991.	0.6	0
17	Stimuli-Responsive Extraction and Ambidextrous Redispersion of Zwitterionic Amphiphile-Capped Silver Nanoparticles. Langmuir, 2016, 32, 6948-6955.	1.6	6
18	Dendritic gold nanowires supported on SiO ₂ nanoparticles fabricated by a seed growth method. New Journal of Chemistry, 2016, 40, 7048-7052.	1.4	10

Clara Morita-Imura

#	Article	IF	CITATIONS
19	Water and Organic Solvent Dispersible Gold Nanorods that are pH Responsive. ChemistrySelect, 2016, 1, 5404-5408.	0.7	11
20	Surface clean gold nanoflower obtained by complete removal of capping agents: an active catalyst for alcohol oxidation. RSC Advances, 2016, 6, 17222-17227.	1.7	26
21	Micro-Scale Friction and Wear at Orthorhombic BaSO ₄ (0 0 1) Surface. Tribology Online, 2016, 11, 608-613.	0.2	0
22	pH-induced recovery and redispersion of shape-controlled gold nanorods for nanocatalysis. RSC Advances, 2015, 5, 75889-75894.	1.7	16
23	Recovery and redispersion of gold nanoparticles using the self-assembly of a pH sensitive zwitterionic amphiphile. Chemical Communications, 2014, 50, 12933-12936.	2.2	25
24	Preparation of Silica-Coated Ultrathin Gold Nanowires with High Morphological Stability. Langmuir, 2014, 30, 1888-1892.	1.6	31
25	Preparation and Catalytic Activity of Pd and Bimetallic Pd–Ni Nanowires. Langmuir, 2014, 30, 5026-5030.	1.6	76
26	Room-Temperature Synthesis of Two-Dimensional Ultrathin Gold Nanowire Parallel Array with Tunable Spacing. Langmuir, 2013, 29, 1669-1675.	1.6	50
27	Reversible dispersion–precipitation of single-walled carbon nanotubes by pH change and addition of organic components. New Journal of Chemistry, 2013, 37, 3607.	1.4	8
28	Thermal-Sensitive Viscosity Transition of Elongated Micelles Induced by Breaking Intermolecular Hydrogen Bonding of Amide Groups. Langmuir, 2013, 29, 5450-5456.	1.6	35
29	Dyeing Cotton Fabrics with Clay Pigments for Declining Environmental Load. Journal of Fiber Science and Technology, 2013, 69, 198-204.	0.0	Ο
30	High organogelation ability and soft-templating for ultrathin Au nanowires of long-chain amidoamine derivatives. Journal of Oleo Science, 2013, 62, 81-87.	0.6	7
31	Fractionation of Au Nanomaterials Using Selective Adsorption of a Long-chain Amidoamine Derivative. Chemistry Letters, 2012, 41, 603-605.	0.7	3
32	Neuron-Shaped Gold Nanocrystals and Two-Dimensional Dendritic Gold Nanowires Fabricated by Use of a Long-Chain Amidoamine Derivative. Langmuir, 2012, 28, 14998-15004.	1.6	30
33	Effect of amide moieties for hydrogelators on gelation property and heating-free pH responsive gel-sol phase transition. Journal of Oleo Science, 2012, 61, 707-713.	0.6	12
34	Water-dispersible ultrathin Au nanowires prepared using a lamellar template of a long-chain amidoamine derivative. Chemical Communications, 2011, 47, 6380.	2.2	50
35	Novel thermo-responsive coloring phenomena in water/surfactant/oil emulsions. Chemical Communications, 2011, 47, 11760.	2.2	16
36	Double-stimuli Responsive O/W Emulsion Gel Based on a Novel Amidoamine Surfactant. Journal of Oleo Science, 2011, 60, 557-562.	0.6	10

#	Article	IF	CITATIONS
37	Network of polystyrene particle strings fabricated using glass slide with hydrophobic and hydrophilic periodical patterns. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 358, 153-157.	2.3	1
38	Changes in viscosity behavior from a normal organogelator to a heat-induced gelator for a long-chain amidoamine derivative. Chemical Communications, 2010, 46, 7969.	2.2	28
39	Reversible phase transfer and fractionation of Au nanoparticles by pH change. Chemical Communications, 2010, 46, 9206.	2.2	48
40	Characterization of colloidal crystal film of polystyrene particles at the air-suspension interface. Journal of Colloid and Interface Science, 2009, 336, 607-611.	5.0	8
41	Preparation and photocoagulation in chloroform of Au nanoparticles capped with azobenzene-derivatized alkanesulfides. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 321, 308-312.	2.3	7
42	Fabrication of 2-Dimensional Honeycomb Films by Using Polystyrene Particle Monolayers. Kobunshi Ronbunshu, 2007, 64, 166-170.	0.2	2