
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7061026/publications.pdf Version: 2024-02-01

Υπληπο Μανς

#	Article	IF	CITATIONS
1	(Nano)platforms in bladder cancer therapy: Challenges and opportunities. Bioengineering and Translational Medicine, 2023, 8, .	3.9	46
2	Patient-derived xenograft models of neuroendocrine prostate cancer. Cancer Letters, 2022, 525, 160-169.	3.2	10
3	Modeling Androgen Deprivation Therapy–Induced Prostate Cancer Dormancy and Its Clinical Implications. Molecular Cancer Research, 2022, 20, 782-793.	1.5	10
4	Identification of alternative protein targets of glutamate-ureido-lysine associated with PSMA tracer uptake in prostate cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	13
5	Targeting SWI/SNF ATPases in enhancer-addicted prostate cancer. Nature, 2022, 601, 434-439.	13.7	110
6	Targeting autophagy in prostate cancer: preclinical and clinical evidence for therapeutic response. Journal of Experimental and Clinical Cancer Research, 2022, 41, 105.	3.5	67
7	The long and short non-coding RNAs modulating EZH2 signaling in cancer. Journal of Hematology and Oncology, 2022, 15, 18.	6.9	89
8	Doxorubicin-loaded graphene oxide nanocomposites in cancer medicine: stimuli-responsive carriers, co-delivery and suppressing resistance. Expert Opinion on Drug Delivery, 2022, 19, 355-382.	2.4	41
9	Framework of Intrinsic Immune Landscape of Dormant Prostate Cancer. Cells, 2022, 11, 1550.	1.8	0
10	Long noncoding RNAs (lncRNAs) in pancreatic cancer progression. Drug Discovery Today, 2022, 27, 2181-2198.	3.2	36
11	Molecular Landscape of LncRNAs in Prostate Cancer: A focus on pathways and therapeutic targets for intervention. Journal of Experimental and Clinical Cancer Research, 2022, 41, .	3.5	69
12	Nanotechnological Approaches in Prostate Cancer Therapy: Integration of engineering and biology. Nano Today, 2022, 45, 101532.	6.2	46
13	<scp>GRB10</scp> sustains <scp>AR</scp> activity by interacting with <scp>PP2A</scp> in prostate cancer cells. International Journal of Cancer, 2021, 148, 469-480.	2.3	3
14	ZRSR2 overexpression is a frequent and early event in castration-resistant prostate cancer development. Prostate Cancer and Prostatic Diseases, 2021, 24, 775-785.	2.0	0
15	A noncanonical AR addiction drives enzalutamide resistance in prostate cancer. Nature Communications, 2021, 12, 1521.	5.8	43
16	Androgen receptor (AR) antagonism triggers acute succinateâ€mediated adaptive responses to reactivate AR signaling. EMBO Molecular Medicine, 2021, 13, e13427.	3.3	11
17	The evolutionarily conserved long nonâ€coding RNA <i>LINC00261</i> drives neuroendocrine prostate cancer proliferation and metastasis <i>via</i> distinct nuclear and cytoplasmic mechanisms. Molecular Oncology, 2021, 15, 1921-1941.	2.1	22
18	Establishment and characterization of a novel treatmentâ€related neuroendocrine prostate cancer cell line KUCaP13. Cancer Science, 2021, 112, 2781-2791.	1.7	9

#	Article	IF	CITATIONS
19	Long non-coding RNAs in the doxorubicin resistance of cancer cells. Cancer Letters, 2021, 508, 104-114.	3.2	118
20	Molecular events in neuroendocrine prostate cancer development. Nature Reviews Urology, 2021, 18, 581-596.	1.9	65
21	SPOP mutation induces DNA methylation via stabilizing GLP/G9a. Nature Communications, 2021, 12, 5716.	5.8	19
22	SPOP mutation induces replication over-firing by impairing Geminin ubiquitination and triggers replication catastrophe upon ATR inhibition. Nature Communications, 2021, 12, 5779.	5.8	14
23	<i>HAR1</i> : an insight into lncRNA genetic evolution. Epigenomics, 2021, 13, 1831-1843.	1.0	12
24	The long noncoding RNA H19 regulates tumor plasticity in neuroendocrine prostate cancer. Nature Communications, 2021, 12, 7349.	5.8	51
25	ETS transcription factors as emerging drug targets in cancer. Medicinal Research Reviews, 2020, 40, 413-430.	5.0	63
26	Differential Expression of Glucose Transporters and Hexokinases in Prostate Cancer with a Neuroendocrine Gene Signature: A Mechanistic Perspective for ¹⁸ F-FDG Imaging of PSMA-Suppressed Tumors. Journal of Nuclear Medicine, 2020, 61, 904-910.	2.8	52
27	Lactic Acid and an Acidic Tumor Microenvironment suppress Anticancer Immunity. International Journal of Molecular Sciences, 2020, 21, 8363.	1.8	171
28	EZH2 inhibition: aÂpromisingÂstrategy to prevent cancer immune editing. Epigenomics, 2020, 12, 1457-1476.	1.0	37
29	Alternative splicing of LSD1+8a in neuroendocrine prostate cancer is mediated by SRRM4. Neoplasia, 2020, 22, 253-262.	2.3	19
30	Well-Differentiated Papillary Mesothelioma of the Peritoneum Is Genetically Distinct from Malignant Mesothelioma. Cancers, 2020, 12, 1568.	1.7	21
31	Conditionally Reprogrammed Cells from Patient-Derived Xenograft to Model Neuroendocrine Prostate Cancer Development. Cells, 2020, 9, 1398.	1.8	13
32	LncRNA <i>HORAS5</i> promotes taxane resistance in castration-resistant prostate cancer via a BCL2A1-dependent mechanism. Epigenomics, 2020, 12, 1123-1138.	1.0	17
33	A synopsis of prostate organoid methodologies, applications, and limitations. Prostate, 2020, 80, 518-526.	1.2	26
34	PKMYT1 is associated with prostate cancer malignancy and may serve as a therapeutic target. Gene, 2020, 744, 144608.	1.0	28
35	Activating AKT1 and PIK3CA Mutations in Metastatic Castration-Resistant Prostate Cancer. European Urology, 2020, 78, 834-844.	0.9	47
36	Long Non-coding RNAs and Cancer Cells' Drug Resistance: An Unexpected Connection. RNA Technologies, 2020, , 167-198.	0.2	1

#	Article	IF	CITATIONS
37	Tâ€ŧype calcium channels drive the proliferation of androgenâ€receptor negative prostate cancer cells. Prostate, 2019, 79, 1580-1586.	1.2	14
38	The novel BET BP/p300 dual inhibitor NEO2734 is active in SPOP mutant and wildâ€ŧype prostate cancer. EMBO Molecular Medicine, 2019, 11, e10659.	3.3	56
39	The evolution of long noncoding RNA acceptance in prostate cancer initiation, progression, and its clinical utility in disease management. European Urology, 2019, 76, 546-559.	0.9	82
40	Potential Therapies for Infectious Diseases Based on Targeting Immune Evasion Mechanisms That Pathogens Have in Common With Cancer Cells. Frontiers in Cellular and Infection Microbiology, 2019, 9, 25.	1.8	6
41	ONECUT2 is a driver of neuroendocrine prostate cancer. Nature Communications, 2019, 10, 278.	5.8	143
42	An actionable sterol-regulated feedback loop modulates statin sensitivity in prostate cancer. Molecular Metabolism, 2019, 25, 119-130.	3.0	55
43	Delta-like protein 3 expression and therapeutic targeting in neuroendocrine prostate cancer. Science Translational Medicine, 2019, 11, .	5.8	105
44	RNA Splicing of the BHC80 Gene Contributes to Neuroendocrine Prostate Cancer Progression. European Urology, 2019, 76, 157-166.	0.9	19
45	The long noncoding <scp>RNA </scp> <i><scp>HORAS</scp>5</i> mediates castrationâ€resistant prostate cancer survival by activating the androgen receptor transcriptional program. Molecular Oncology, 2019, 13, 1121-1136.	2.1	28
46	Exonuclease 1 expression is associated with clinical progression, metastasis, and survival prognosis of prostate cancer. Journal of Cellular Biochemistry, 2019, 120, 11383-11389.	1.2	28
47	BAP1 haploinsufficiency predicts a distinct immunogenic class of malignant peritoneal mesothelioma. Genome Medicine, 2019, 11, 8.	3.6	88
48	Class I <scp>HDAC</scp> inhibitors enhance <scp>YB</scp> â€1 acetylation and oxidative stress to block sarcoma metastasis. EMBO Reports, 2019, 20, e48375.	2.0	78
49	Treatment-emergent neuroendocrine prostate cancer: molecularly driven clinical guidelines. International Journal of Endocrine Oncology, 2019, 6, IJE20.	0.4	12
50	SRRM4 gene expression correlates with neuroendocrine prostate cancer. Prostate, 2019, 79, 96-104.	1.2	25
51	Proteogenomic Characterization of Patient-Derived Xenografts Highlights the Role of REST in Neuroendocrine Differentiation of Castration-Resistant Prostate Cancer. Clinical Cancer Research, 2019, 25, 595-608.	3.2	55
52	Activity of NEO2734, a novel dual inhibitor of both BET and CBP-P300, in SPOP-mutated prostate cancer Journal of Clinical Oncology, 2019, 37, 62-62.	0.8	4
53	Neuroendocrine differentiation of prostate cancer leads to PSMA suppression. Endocrine-Related Cancer, 2019, 26, 131-146.	1.6	98
54	Abstract 3698: Conditionally reprogrammed cells from patient-derived xenograft to model neuroendocrine prostate cancer development. , 2019, , .		0

#	Article	IF	CITATIONS
55	Heterochromatin Protein 1α Mediates Development and Aggressiveness of Neuroendocrine Prostate Cancer. Cancer Research, 2018, 78, 2691-2704.	0.4	48
56	Aneustat (OMN54) has aerobic glycolysisâ€inhibitory activity and also immunomodulatory activity as indicated by a firstâ€generation PDX prostate cancer model. International Journal of Cancer, 2018, 143, 419-429.	2.3	8
57	Treatment with docetaxel in combination with Aneustat leads to potent inhibition of metastasis in a patient-derived xenograft model of advanced prostate cancer. British Journal of Cancer, 2018, 118, 802-812.	2.9	12
58	Engineering Multifunctional RNAi Nanomedicine To Concurrently Target Cancer Hallmarks for Combinatorial Therapy. Angewandte Chemie - International Edition, 2018, 57, 1510-1513.	7.2	168
59	Engineering Multifunctional RNAi Nanomedicine To Concurrently Target Cancer Hallmarks for Combinatorial Therapy. Angewandte Chemie, 2018, 130, 1526-1529.	1.6	29
60	Patient-derived Hormone-naive Prostate Cancer Xenograft Models Reveal Growth Factor Receptor Bound Protein 10 as an Androgen Receptor-repressed Gene Driving the Development of Castration-resistant Prostate Cancer. European Urology, 2018, 73, 949-960.	0.9	19
61	Patient-derived xenografts: A platform for accelerating translational research in prostate cancer. Molecular and Cellular Endocrinology, 2018, 462, 17-24.	1.6	20
62	Stromal Gene Expression is Predictive for Metastatic Primary Prostate Cancer. European Urology, 2018, 73, 524-532.	0.9	60
63	ls HOTAIR really involved in neuroendocrine prostate cancer differentiation?. Epigenomics, 2018, 10, 1259-1261.	1.0	7
64	Selective Inhibition of the Lactate Transporter MCT4 Reduces Growth of Invasive Bladder Cancer. Molecular Cancer Therapeutics, 2018, 17, 2746-2755.	1.9	53
65	Inhibition of Transient Receptor Potential Vanilloid 6 channel, elevated in human ovarian cancers, reduces tumour growth in a xenograft model. Journal of Cancer, 2018, 9, 3196-3207.	1.2	39
66	The long noncoding RNA landscape of neuroendocrine prostate cancer and its clinical implications. GigaScience, 2018, 7, .	3.3	54
67	Prevention of Prostate Tumor Development by Stimulation of Antitumor Immunity Using a Standardized Herbal Extract (Deep Immune®) in TRAMP Mice. Evidence-based Complementary and Alternative Medicine, 2018, 2018, 1-12.	0.5	5
68	Pre-clinical Models for Malignant Mesothelioma Research: From Chemical-Induced to Patient-Derived Cancer Xenografts. Frontiers in Genetics, 2018, 9, 232.	1.1	9
69	Movember GAP1 PDX project: An international collection of serially transplantable prostate cancer patientâ€derived xenograft (PDX) models. Prostate, 2018, 78, 1262-1282.	1.2	76
70	Targeting <scp>MCT</scp> 4 to reduce lactic acid secretion and glycolysis for treatment of neuroendocrine prostate cancer. Cancer Medicine, 2018, 7, 3385-3392.	1.3	55
71	TMEM45B is a novel predictive biomarker for prostate cancer progression and metastasis. Neoplasma, 2018, 65, 815-821.	0.7	6
72	Abstract 3410: Copy number estimation from whole-exome sequencing in tumors. , 2018, , .		0

#	Article	IF	CITATIONS
73	Abstract 1918: Patient-derived hormone-naive prostate cancer xenograft models revealGRB10as an AR-repressed gene driving the development of castration-resistant prostate cancer. , 2018, , .		0
74	Abstract 773: A heterochromatin gene signature unveils HP1Î \pm mediating neuroendocrine prostate cancer development and aggressiveness. , 2018, , .		0
75	SRRM4 Drives Neuroendocrine Transdifferentiation of Prostate Adenocarcinoma Under Androgen Receptor Pathway Inhibition. European Urology, 2017, 71, 68-78.	0.9	136
76	Prospectives. Molecular and Translational Medicine, 2017, , 193-200.	0.4	0
77	Patient-Derived Tumor Xenografts: Historical Background. Molecular and Translational Medicine, 2017, , 1-9.	0.4	0
78	Intrinsic BET inhibitor resistance in SPOP-mutated prostate cancer is mediated by BET protein stabilization and AKT–mTORC1 activation. Nature Medicine, 2017, 23, 1055-1062.	15.2	225
79	miR-100-5p inhibition induces apoptosis in dormant prostate cancer cells and prevents the emergence of castration-resistant prostate cancer. Scientific Reports, 2017, 7, 4079.	1.6	37
80	A germline FANCA alteration that is associated with increased sensitivity to DNA damaging agents. Journal of Physical Education and Sports Management, 2017, 3, a001487.	0.5	25
81	Hormonal Carcinogenesis: The Role of Estrogens. , 2017, , 307-322.		0
82	The Master Neural Transcription Factor BRN2 Is an Androgen Receptor–Suppressed Driver of Neuroendocrine Differentiation in Prostate Cancer. Cancer Discovery, 2017, 7, 54-71.	7.7	285
83	<i>BIRC6</i> Targeting as Potential Therapy for Advanced, Enzalutamide-Resistant Prostate Cancer. Clinical Cancer Research, 2017, 23, 1542-1551.	3.2	28
84	BIRC6 (Baculoviral IAP repeat-containing 6). Atlas of Genetics and Cytogenetics in Oncology and Haematology, 2017, , .	0.1	0
85	Biological and Clinical Evidence for Metabolic Dormancy in Solid Tumors Post Therapy. Cancer Drug Discovery and Development, 2017, , 17-29.	0.2	1
86	Immuno-oncology of Dormant Tumours. Cancer Drug Discovery and Development, 2017, , 51-60.	0.2	1
87	Prognostic relevance of a T-type calcium channels gene signature in solid tumours: A correlation ready for clinical validation. PLoS ONE, 2017, 12, e0182818.	1.1	17
88	Switching off malignant mesothelioma: exploiting the hypoxic microenvironment. Genes and Cancer, 2017, 7, 340-354.	0.6	20
89	Androgen receptor transcriptionally regulates semaphorin 3C in a GATA2-dependent manner. Oncotarget, 2017, 8, 9617-9633.	0.8	18
90	Metabolic heterogeneity signature of primary treatment-naÃ ⁻ ve prostate cancer. Oncotarget, 2017, 8, 25928-25941.	0.8	16

#	Article	IF	CITATIONS
91	Abstract 4420: Elevated glycolytic gene signature in patient-derived neuroendocrine prostate cancer xenograft models and its clinical relevance. , 2017, , .		0
92	Abstract 3189: Neuronal transcription factor BRN2 is an androgen suppressed driver of neuroendocrine differentiation in prostate cancer. , 2017, , .		0
93	An Aqueous Extract of Marine Microalgae Exhibits Antimetastatic Activity through Preferential Killing of Suspended Cancer Cells and Anticolony Forming Activity. Evidence-based Complementary and Alternative Medicine, 2016, 2016, 1-8.	0.5	23
94	Elevated XPO6 expression as a potential prognostic biomarker for prostate cancer recurrence. Frontiers in Bioscience - Scholar, 2016, 8, 44-55.	0.8	13
95	Elevated expression of the centromere proteinâ€A(CENPâ€A)â€encoding gene as a prognostic and predictive biomarker in human cancers. International Journal of Cancer, 2016, 139, 899-907.	2.3	92
96	Subrenal capsule grafting technology in human cancer modeling and translational cancer research. Differentiation, 2016, 91, 15-19.	1.0	24
97	The role of epigenetics and long noncoding RNA MIAT in neuroendocrine prostate cancer. Epigenomics, 2016, 8, 721-731.	1.0	94
98	Immune phenotypes of prostate cancer cells: Evidence of epithelial immune cell-like transition?. Asian Journal of Urology, 2016, 3, 195-202.	0.5	12
99	Diffuse large B-cell lymphoma patient-derived xenograft models capture the molecular and biological heterogeneity of the disease. Blood, 2016, 127, 2203-2213.	0.6	68
100	Identification of the epigenetic reader CBX2 as a potential drug target in advanced prostate cancer. Clinical Epigenetics, 2016, 8, 16.	1.8	55
101	Integrated analysis of the prostate cancer smallâ€nucleolar transcriptome reveals SNORA55 as a driver of prostate cancer progression. Molecular Oncology, 2016, 10, 693-703.	2.1	48
102	The <i>MCT4</i> Gene: A Novel, Potential Target for Therapy of Advanced Prostate Cancer. Clinical Cancer Research, 2016, 22, 2721-2733.	3.2	84
103	Abstract 1834: Semaphorin 3C is an androgen receptor-regulated gene. , 2016, , .		0
104	Molecular and pathological characterization of the EZH2 rs3757441 single nucleotide polymorphism in colorectal cancer. BMC Cancer, 2015, 15, 874.	1.1	10
105	miR-188-5p inhibits tumour growth and metastasis in prostate cancer by repressing LAPTM4B expression. Oncotarget, 2015, 6, 6092-6104.	0.8	82
106	Whole-Exome Sequencing of Metastatic Cancer and Biomarkers of Treatment Response. JAMA Oncology, 2015, 1, 466.	3.4	264
107	Generation 2.5 Antisense Oligonucleotides Targeting the Androgen Receptor and Its Splice Variants Suppress Enzalutamide-Resistant Prostate Cancer Cell Growth. Clinical Cancer Research, 2015, 21, 1675-1687.	3.2	108
108	The long non-coding RNA PCGEM1 is regulated by androgen receptor activity in vivo. Molecular Cancer, 2015, 14, 46.	7.9	71

#	Article	IF	CITATIONS
109	The expression of glucocorticoid receptor is negatively regulated by active androgen receptor signaling in prostate tumors. International Journal of Cancer, 2015, 136, E27-38.	2.3	87
110	Polycomb-mediated silencing in neuroendocrine prostate cancer. Clinical Epigenetics, 2015, 7, 40.	1.8	93
111	YB-1 regulates stress granule formation and tumor progression by translationally activating G3BP1. Journal of Cell Biology, 2015, 208, 913-929.	2.3	224
112	Androgen Receptor Gene Aberrations in Circulating Cell-Free DNA: Biomarkers of Therapeutic Resistance in Castration-Resistant Prostate Cancer. Clinical Cancer Research, 2015, 21, 2315-2324.	3.2	407
113	Translational Activation of HIF1Î \pm by YB-1 Promotes Sarcoma Metastasis. Cancer Cell, 2015, 27, 682-697.	7.7	226
114	The epigenetic/noncoding origin of tumor dormancy. Trends in Molecular Medicine, 2015, 21, 206-211.	3.5	59
115	Polycomb genes are associated with response to imatinib in chronic myeloid leukemia. Epigenomics, 2015, 7, 757-765.	1.0	22
116	The Placental Gene PEG10 Promotes Progression of Neuroendocrine Prostate Cancer. Cell Reports, 2015, 12, 922-936.	2.9	216
117	Dynamics of genomic clones in breast cancer patient xenografts at single-cell resolution. Nature, 2015, 518, 422-426.	13.7	545
118	Identification of DEK as a potential therapeutic target for neuroendocrine prostate cancer. Oncotarget, 2015, 6, 1806-1820.	0.8	40
119	Patient-derived bladder cancer xenografts in the preclinical development of novel targeted therapies. Oncotarget, 2015, 6, 21522-21532.	0.8	39
120	The Non oding Transcriptome as a Dynamic Regulator of Prostate Cancer Metastasis. FASEB Journal, 2015, 29, 221.3.	0.2	0
121	Transmembrane and Coiled-Coil Domain Family 1 Is a Novel Protein of the Endoplasmic Reticulum. PLoS ONE, 2014, 9, e85206.	1.1	15
122	The role of mRNA splicing in prostate cancer. Asian Journal of Andrology, 2014, 16, 515.	0.8	21
123	High Fidelity Patient-Derived Xenografts for Accelerating Prostate Cancer Discovery and Drug Development. Cancer Research, 2014, 74, 1272-1283.	0.4	304
124	INPP4B suppresses prostate cancer cell invasion. Cell Communication and Signaling, 2014, 12, 61.	2.7	36
125	Heterogeneity in the inter-tumor transcriptome of high risk prostate cancer. Genome Biology, 2014, 15, 426.	3.8	71
126	Crosstalk Between Nuclear MET and SOX9/β-Catenin Correlates with Castration-Resistant Prostate Cancer. Molecular Endocrinology, 2014, 28, 1629-1639.	3.7	37

#	Article	IF	CITATIONS
127	Lessons from patient-derived xenografts for better in vitro modeling of human cancer. Advanced Drug Delivery Reviews, 2014, 79-80, 222-237.	6.6	146
128	REST mediates androgen receptor actions on gene repression and predicts early recurrence of prostate cancer. Nucleic Acids Research, 2014, 42, 999-1015.	6.5	125
129	Enhanced anticancer activity of a combination of docetaxel and Aneustat (OMN54) in a patientâ€derived, advanced prostate cancer tissue xenograft model. Molecular Oncology, 2014, 8, 311-322.	2.1	28
130	The non-coding transcriptome as a dynamic regulator of cancer metastasis. Cancer and Metastasis Reviews, 2014, 33, 1-16.	2.7	91
131	Systematic Identification and Characterization of RNA Editing in Prostate Tumors. PLoS ONE, 2014, 9, e101431.	1.1	15
132	A Meta-Analysis Approach for Characterizing Pan-Cancer Mechanisms of Drug Sensitivity in Cell Lines. PLoS ONE, 2014, 9, e103050.	1.1	7
133	GATA2 as a potential metastasis-driving gene in prostate cancer. Oncotarget, 2014, 5, 451-461.	0.8	56
134	Identification of a long non-coding RNA as a novel biomarker and potential therapeutic target for metastatic prostate cancer. Oncotarget, 2014, 5, 764-774.	0.8	215
135	The <i>BIRC6</i> gene as a novel target for therapy of prostate cancer: dual targeting of inhibitors of apoptosis. Oncotarget, 2014, 5, 6896-6908.	0.8	31
136	Prostate cancer metastasis-driving genes: hurdles and potential approaches in their identification. Asian Journal of Andrology, 2014, 16, 545.	0.8	11
137	Next generation patient-derived prostate cancer xenograft models. Asian Journal of Andrology, 2014, 16, 407.	0.8	30
138	Cancerâ€generated lactic acid: a regulatory, immunosuppressive metabolite?. Journal of Pathology, 2013, 230, 350-355.	2.1	246
139	Developmental and androgenic regulation of chromatin regulators EZH2 and ANCCA/ATAD2 in the prostate Via MLL histone methylase complex. Prostate, 2013, 73, 455-466.	1.2	40
140	Prognostication of prostate cancer based on NUCB2 protein assessment: NUCB2 in prostate cancer. Journal of Experimental and Clinical Cancer Research, 2013, 32, 77.	3.5	42
141	Elevated Expression of BIRC6 Protein in Non–Small-Cell Lung Cancers is Associated with Cancer Recurrence and Chemoresistance. Journal of Thoracic Oncology, 2013, 8, 161-170.	0.5	43
142	Plasma miRNAs as Biomarkers to Identify Patients with Castration-Resistant Metastatic Prostate Cancer. International Journal of Molecular Sciences, 2013, 14, 7757-7770.	1.8	122
143	Increased PrLZ-mediated androgen receptor transactivation promotes prostate cancer growth at castration-resistant stage. Carcinogenesis, 2013, 34, 257-267.	1.3	32
144	Lessons from in-vivo models of castration-resistant prostate cancer. Current Opinion in Urology, 2013, 23, 214-219.	0.9	8

#	Article	IF	CITATIONS
145	Expression and Function of the Progesterone Receptor in Human Prostate Stroma Provide Novel Insights to Cell Proliferation Control. Journal of Clinical Endocrinology and Metabolism, 2013, 98, 2887-2896.	1.8	69
146	The diverse heterogeneity of molecular alterations in prostate cancer identified through next-generation sequencing. Asian Journal of Andrology, 2013, 15, 301-308.	0.8	39
147	Deletion of Leucine Zipper Tumor Suppressor 2 (Lzts2) Increases Susceptibility to Tumor Development. Journal of Biological Chemistry, 2013, 288, 3727-3738.	1.6	20
148	<scp>ERBB</scp> 4 confers metastatic capacity in Ewing sarcoma. EMBO Molecular Medicine, 2013, 5, 1087-1102.	3.3	71
149	Genistein versus ICI 182, 780: An ally or enemy in metastatic progression of prostate cancer. Prostate, 2013, 73, 1747-1760.	1.2	15
150	Chromoplexy: a new paradigm in genome remodeling and evolution. Asian Journal of Andrology, 2013, 15, 711-712.	0.8	6
151	BIRC6 Protein, an Inhibitor of Apoptosis: Role in Survival of Human Prostate Cancer Cells. PLoS ONE, 2013, 8, e55837.	1.1	33
152	Androgen hormone action in prostatic carcinogenesis: stromal androgen receptors mediate prostate cancer progression, malignant transformation and metastasis. Carcinogenesis, 2012, 33, 1391-1398.	1.3	69
153	Next Generation Sequencing of Prostate Cancer from a Patient Identifies a Deficiency of Methylthioadenosine Phosphorylase, an Exploitable Tumor Target. Molecular Cancer Therapeutics, 2012, 11, 775-783.	1.9	34
154	Integrin-linked kinase as a target for ERG-mediated invasive properties in prostate cancer models. Carcinogenesis, 2012, 33, 2558-2567.	1.3	51
155	Epithelial immune cell-like transition (EIT): A proposed transdifferentiation process underlying immune-suppressive activity of epithelial cancers. Differentiation, 2012, 83, 293-298.	1.0	22
156	Polyâ€gene fusion transcripts and chromothripsis in prostate cancer. Genes Chromosomes and Cancer, 2012, 51, 1144-1153.	1.5	46
157	From sequence to molecular pathology, and a mechanism driving the neuroendocrine phenotype in prostate cancer. Journal of Pathology, 2012, 227, 286-297.	2.1	161
158	Drug sensitivity testing for personalized lung cancer therapy. Journal of Thoracic Disease, 2012, 4, 17-8.	0.6	38
159	The immunoregulatory mechanisms of carcinoma for its survival and development. Journal of Experimental and Clinical Cancer Research, 2011, 30, 12.	3.5	47
160	CSF1 Expression in Nongynecological Leiomyosarcoma Is Associated with Increased Tumor Angiogenesis. American Journal of Pathology, 2011, 179, 2100-2107.	1.9	33
161	Comprehensive analysis of mammalian miRNA* species and their role in myeloid cells. Blood, 2011, 118, 3350-3358.	0.6	90
162	Molecular Characterization of Neuroendocrine Prostate Cancer and Identification of New Drug Targets. Cancer Discovery, 2011, 1, 487-495.	7.7	725

#	Article	IF	CITATIONS
163	Genistein Increases Epidermal Growth Factor Receptor Signaling and Promotes Tumor Progression in Advanced Human Prostate Cancer. PLoS ONE, 2011, 6, e20034.	1.1	60
164	MicroRNAs Associated with Metastatic Prostate Cancer. PLoS ONE, 2011, 6, e24950.	1.1	183
165	Multiplexed Quantum Dot Labeling of Activated c-Met Signaling in Castration-Resistant Human Prostate Cancer. PLoS ONE, 2011, 6, e28670.	1.1	47
166	Use of irinotecan for treatment of small cell carcinoma of the prostate. Prostate, 2011, 71, 675-681.	1.2	22
167	Collagen Triple Helix Repeat Containing 1 Promotes Melanoma Cell Adhesion and Survival. Journal of Cutaneous Medicine and Surgery, 2011, 15, 103-110.	0.6	30
168	Tumor Growth Inhibition by Olaparib in <i>BRCA2</i> Germline-Mutated Patient-Derived Ovarian Cancer Tissue Xenografts. Clinical Cancer Research, 2011, 17, 783-791.	3.2	67
169	Identification of Novel Therapeutic Targets in Microdissected Clear Cell Ovarian Cancers. PLoS ONE, 2011, 6, e21121.	1.1	71
170	Regression of Castrate-Recurrent Prostate Cancer by a Small-Molecule Inhibitor of the Amino-Terminus Domain of the Androgen Receptor. Cancer Cell, 2010, 17, 535-546.	7.7	452
171	Development of metastatic and nonâ€metastatic tumor lines from a patient's prostate cancer specimen—identification of a small subpopulation with metastatic potential in the primary tumor. Prostate, 2010, 70, 1636-1644.	1.2	31
172	Differential androgen receptor signals in different cells explain why androgen-deprivation therapy of prostate cancer fails. Oncogene, 2010, 29, 3593-3604.	2.6	116
173	Patient-Derived First Generation Xenografts of Non–Small Cell Lung Cancers: Promising Tools for Predicting Drug Responses for Personalized Chemotherapy. Clinical Cancer Research, 2010, 16, 1442-1451.	3.2	170
174	Therapeutic Antibodies Targeting CSF1 Impede Macrophage Recruitment in a Xenograft Model of Tenosynovial Giant Cell Tumor. Sarcoma, 2010, 2010, 1-7.	0.7	26
175	Estrogen receptor–β activated apoptosis in benign hyperplasia and cancer of the prostate is androgen independent and TNFα mediated. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3123-3128.	3.3	178
176	Induction of neuronal apoptosis inhibitory protein expression in response to androgen deprivation in prostate cancer. Cancer Letters, 2010, 292, 176-185.	3.2	22
177	Response to Savaskan NE et al. "The x cystine/glutamate antiporter—A potential target for therapy of cancer and other diseases: Yet another cytotoxic anticancer approach?― Journal of Cellular Physiology, 2009, 220, 533-534.	2.0	2
178	The x c â^' cystine/glutamate antiporter as a potential therapeutic target for small-cell lung cancer: use of sulfasalazine. Cancer Chemotherapy and Pharmacology, 2009, 64, 463-472.	1.1	106
179	Inhibition of the Androgen Receptor as a Novel Mechanism of Taxol Chemotherapy in Prostate Cancer. Cancer Research, 2009, 69, 8386-8394.	0.4	179
180	A Novel Protein Isoform of the Multicopy Human NAIP Gene Derives from Intragenic Alu SINE Promoters. PLoS ONE, 2009, 4, e5761.	1.1	47

#	Article	IF	CITATIONS
181	The x cystine/glutamate antiporter: A potential target for therapy of cancer and other diseases. Journal of Cellular Physiology, 2008, 215, 593-602.	2.0	346
182	The xcâ^' cystine/glutamate antiporter: a mediator of pancreatic cancer growth with a role in drug resistance. British Journal of Cancer, 2008, 99, 464-472.	2.9	167
183	Xenografts of primary human gynecological tumors grown under the renal capsule of NOD/SCID mice show genetic stability during serial transplantation and respond to cytotoxic chemotherapy. Gynecologic Oncology, 2008, 110, 256-264.	0.6	59
184	Decitabine-Induced Demethylation of 5′ CpG Island in GADD45A Leads to Apoptosis in Osteosarcoma Cells. Neoplasia, 2008, 10, 471-480.	2.3	54
185	Prostatic hormonal carcinogenesis is mediated by <i>in situ</i> estrogen production and estrogen receptor alpha signaling. FASEB Journal, 2008, 22, 1512-1520.	0.2	198
186	<i>ASAP1</i> , a Gene at 8q24, Is Associated with Prostate Cancer Metastasis. Cancer Research, 2008, 68, 4352-4359.	0.4	87
187	The Androgen Receptor Negatively Regulates the Expression of c-Met: Implications for a Novel Mechanism of Prostate Cancer Progression. Cancer Research, 2007, 67, 967-975.	0.4	170
188	Modulation by decitabine of gene expression and growth of osteosarcoma U2OS cells in vitro and in xenografts: Identification of apoptotic genes as targets for demethylation. Cancer Cell International, 2007, 7, 14.	1.8	48
189	Sulfasalazine-induced cystine starvation: Potential use for prostate cancer therapy. Prostate, 2007, 67, 162-171.	1.2	97
190	Bisphenol A induces permanent squamous change in mouse prostatic epithelium. Differentiation, 2007, 75, 745-756.	1.0	34
191	Steroid hormones and carcinogenesis of the prostate: the role of estrogens. Differentiation, 2007, 75, 871-882.	1.0	58
192	Molecular analysis and characterization of PrEc, commercially available prostate epithelial cells. In Vitro Cellular and Developmental Biology - Animal, 2006, 42, 33-39.	0.7	15
193	Steroid hormones stimulate human prostate cancer progression and metastasis. International Journal of Cancer, 2006, 118, 2123-2131.	2.3	81
194	MOLECULAR ANALYSIS AND CHARACTERIZATION OF PrEC, COMMERCIALLY AVAILABLE PROSTATE EPITHELIAL CELLS. In Vitro Cellular and Developmental Biology - Animal, 2006, 42, 33.	0.7	1
195	Establishment in Severe Combined Immunodeficiency Mice of Subrenal Capsule Xenografts and Transplantable Tumor Lines from a Variety of Primary Human Lung Cancers: Potential Models for Studying Tumor Progression–Related Changes. Clinical Cancer Research, 2006, 12, 4043-4054.	3.2	102
196	Development and Assessment of Conventional and Targeted Drug Combinations for Use in the Treatment of Aggressive Breast Cancers. Current Cancer Drug Targets, 2006, 6, 455-489.	0.8	36
197	An orthotopic metastatic prostate cancer model in SCID mice via grafting of a transplantable human prostate tumor line. Laboratory Investigation, 2005, 85, 1392-1404.	1.7	107
198	Establishment of subrenal capsule xenografts of primary human ovarian tumors in SCID mice: potential models. Gynecologic Oncology, 2005, 96, 48-55.	0.6	85

#	Article	IF	CITATIONS
199	Development and characterization of efficient xenograft models for benign and malignant human prostate tissue. Prostate, 2005, 64, 149-159.	1.2	162
200	The Ontogeny of the Urogenital System of the Spotted Hyena (Crocuta crocuta Erxleben)1. Biology of Reproduction, 2005, 73, 554-564.	1.2	36
201	Hormonal, cellular, and molecular regulation of normal and neoplastic prostatic development. Journal of Steroid Biochemistry and Molecular Biology, 2004, 92, 221-236.	1.2	266
202	Rescue and Isolation of Rb-deficient Prostate Epithelium by Tissue Recombination. , 2003, 218, 17-34.		3
203	hZimp10 is an androgen receptor co-activator and forms a complex with SUMO-1 at replication foci. EMBO Journal, 2003, 22, 6101-6114.	3.5	108
204	Urogenital system of the spotted hyena (Crocuta crocuta Erxleben): A functional histological study. Journal of Morphology, 2003, 256, 205-218.	0.6	33
205	Quantitation of apoptotic activity following castration in human prostatic tissue in vivo. Prostate, 2003, 54, 212-219.	1.2	47
206	Rescue of Embryonic Epithelium Reveals That the Homozygous Deletion of the Retinoblastoma Gene Confers Growth Factor Independence and Immortality but Does Not Influence Epithelial Differentiation or Tissue Morphogenesis. Journal of Biological Chemistry, 2002, 277, 44475-44484.	1.6	29
207	Evidence That Epithelial and Mesenchymal Estrogen Receptor-α Mediates Effects of Estrogen on Prostatic Epithelium. Developmental Biology, 2001, 229, 432-442.	0.9	155
208	The BMP Family Member Gdf7 Is Required for Seminal Vesicle Growth, Branching Morphogenesis, and Cytodifferentiation. Developmental Biology, 2001, 234, 138-150.	0.9	57
209	Estrogenic effects on prostatic differentiation and carcinogenesis. Reproduction, Fertility and Development, 2001, 13, 285.	0.1	74
210	Paracrine regulation of apoptosis by steroid hormones in the male and female reproductive system. Cell Death and Differentiation, 2001, 8, 192-200.	5.0	171
211	Cell differentiation lineage in the prostate. Differentiation, 2001, 68, 270-279.	1.0	270
212	Growth factors and epithelial-stromal interactions in prostate cancer development. International Review of Cytology, 2000, 199, 65-116.	6.2	82
213	Changes in Serum and Tissue Zinc Levels in Sex Hormone-Induced Prostatic Carcinogenesis in the Noble Rat. Tumor Biology, 2000, 21, 328-336.	0.8	8
214	Sex hormone-induced prostatic carcinogenesis in the Noble rat: The role of insulin-like growth factor-1 (IGF-1) and vascular endothelial growth factor (VEGF) in the development of prostate cancer. , 1998, 35, 165-177.		105
215	Oncogenes and tumor suppressor genes in prostate cancer: a review. Urologic Oncology: Seminars and Original Investigations, 1997, 3, 41-46.	0.8	16
216	The influence of mesenchyme of neonatal seminal vesicle and embryonic urogenital sinus on the morphologic and functional cytodifferentiation of dunning prostatic adenocarcinoma: Roles of growth factors and proto-oncogenes. Urologic Oncology: Seminars and Original Investigations, 1997, 3, 85-93.	0.8	9

#	Article	IF	CITATIONS
217	Using NEPC cell NCI-H660 for in vitro assays. Protocol Exchange, 0, , .	0.3	0
218	Targeting HP1-alpha for prevention and treatment of neuroendocrine prostate cancer. Oncology Abstracts, 0, , .	0.0	0