
Dina Stroopinsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7060741/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Individualized vaccination of AML patients in remission is associated with induction of antileukemia immunity and prolonged remissions. Science Translational Medicine, 2016, 8, 368ra171.	5.8	140
2	MUC1-mediated induction of myeloid-derived suppressor cells in patients with acute myeloid leukemia. Blood, 2017, 129, 1791-1801.	0.6	130
3	Epsteinâ ^{~,} Barr virus-encoded EBNA2 alters immune checkpoint PD-L1 expression by downregulating miR-34a in B-cell lymphomas. Leukemia, 2019, 33, 132-147.	3.3	126
4	Cobomarsen, an Oligonucleotide Inhibitor of miR-155, Slows DLBCL Tumor Cell Growth <i>In Vitro</i> and <i>In Vivo</i> . Clinical Cancer Research, 2021, 27, 1139-1149.	3.2	76
5	Hypomethylating agent alters the immune microenvironment in acute myeloid leukaemia (AML) and enhances the immunogenicity of a dendritic cell/AML vaccine. British Journal of Haematology, 2019, 185, 679-690.	1.2	52
6	MUC1 Is a Potential Target for the Treatment of Acute Myeloid Leukemia Stem Cells. Cancer Research, 2013, 73, 5569-5579.	0.4	49
7	Combining a CAR and a chimeric costimulatory receptor enhances T cell sensitivity to low antigen density and promotes persistence. Science Translational Medicine, 2021, 13, eabh1962.	5.8	49
8	MUC1-C induces DNA methyltransferase 1 and represses tumor suppressor genes in acute myeloid leukemia. Oncotarget, 2016, 7, 38974-38987.	0.8	36
9	Transduction of Malignant Plasma Cells with Three Costimulatory Molecules (TRICOM) Elicits Myeloma-Specific Immune Response in Vitro – a Promising Strategy for Immunotherapy. Blood, 2012, 120, 1908-1908.	0.6	35
10	Bone marrow stroma protects myeloma cells from cytotoxic damage via induction of the oncoprotein <scp>MUC</scp> 1. British Journal of Haematology, 2017, 176, 929-938.	1.2	34
11	Vulnerabilities in mIDH2 AML confer sensitivity to APL-like targeted combination therapy. Cell Research, 2019, 29, 446-459.	5.7	32
12	Mucin 1 is a potential therapeutic target in cutaneous T-cell lymphoma. Blood, 2015, 126, 354-362.	0.6	31
13	Phase 1 clinical trial evaluating abatacept in patients with steroid-refractory chronic graft-versus-host disease. Blood, 2018, 131, 2836-2845.	0.6	30
14	MUC1 in hematological malignancies. Leukemia and Lymphoma, 2016, 57, 2489-2498.	0.6	22
15	Leukemia vaccine overcomes limitations of checkpoint blockade by evoking clonal T cell responses in a murine acute myeloid leukemia model. Haematologica, 2021, 106, 1330-1342.	1.7	19
16	MUC1-C oncoprotein promotes FLT3 receptor activation in acute myeloid leukemia cells. Blood, 2014, 123, 734-742.	0.6	16
17	Lenalidomide Decreases PD-1 Expression, Depletes Regulatory T-Cells and Improves Cellular Response to a Multiple Myeloma/Dendritic Cell Fusion Vaccine In Vitro. Blood, 2010, 116, 492-492.	0.6	13
18	A phase I study of lenalidomide plus chemotherapy with mitoxantrone, etoposide, and cytarabine for the reinduction of patients with acute myeloid leukemia. American Journal of Hematology, 2018, 93, 254-261.	2.0	12

DINA STROOPINSKY

#	Article	IF	CITATIONS
19	MUC1-C drives myeloid leukaemogenesis and resistance to treatment by a survivin-mediated mechanism. Journal of Cellular and Molecular Medicine, 2018, 22, 3887-3898.	1.6	12
20	Decitabine Priming Enhances Mucin 1 Inhibition Mediated Disruption of Redox Homeostasis in Cutaneous T-Cell Lymphoma. Molecular Cancer Therapeutics, 2017, 16, 2304-2314.	1.9	10
21	Blockade of PD-1 in Combination with Dendritic Cell/Myeloma Fusion Cell Vaccination Following Autologous Stem Cell Transplantation Is Well Tolerated, Induces Anti-Tumor Immunity and May Lead to Eradication of Measureable Disease. Blood, 2015, 126, 4218-4218.	0.6	10
22	Clinical Trial Evaluating DC/AML Fusion Cell Vaccination In AML Patients. Blood, 2013, 122, 3928-3928.	0.6	7
23	DC/Aml Fusion Cell Vaccination Administered to AML Patients Who Achieve a Complete Remission Potently Expands Leukemia Reactive T Cells and Is Associated with Durable Remissions. Blood, 2015, 126, 2549-2549.	0.6	5
24	Clinical Trial Evaluating DC/AML Fusion Cell Vaccination Alone and in Conjunction with PD-1 Blockade in AML Patients Who Achieve a Chemotherapy-Induced Remission. Blood, 2011, 118, 948-948.	0.6	3
25	Mucin-1 (MUC1) Oncoprotein in Multiple Myeloma Cells Inhibits the Th1 Responses By Down Regulating the Expression of Mir-200c and up-Regulating the PDL1 Expression. Blood, 2014, 124, 2072-2072.	0.6	3
26	Phase II Clinical Trial of Abatacept for Steroid-Refractory Chronic Graft Versus Host Disease. Blood, 2021, 138, 264-264.	0.6	3
27	A Novel Monoclonal Antibody Combination Plus DC/AML Fusion Vaccine Eradicates AML in an Immunocompetent Murine Model. Blood, 2018, 132, 1446-1446.	0.6	2
28	CD155-Tigit Pathway Modulation in Dendritic Cell/Acute Myeloid Leukemia Fusion Vaccine Model. Blood, 2019, 134, 1386-1386.	0.6	2
29	Development of Novel Second Generation DC/Tumor Fusion Vaccine in Lymphoma. Blood, 2019, 134, 392-392.	0.6	2
30	T Cells Educated By DC/AML Fusions in the Context of 4-1BB Costimulation As a Potent Strategy for Adoptive Cellular Therapy. Blood, 2019, 134, 2673-2673.	0.6	2
31	MUC1 Inhibition Overcomes Chemotherapy Resistance in Acute Myeloid Leukemia. Blood, 2015, 126, 2473-2473.	0.6	2
32	Phase I Clinical Trial Evaluating Abatacept in Patient with Steroid-Refractory Chronic Graft Versus Host Disease. Blood, 2016, 128, 387-387.	0.6	2
33	Impact of Autologous Hematopoietic Cell Transplant (HCT) Followed By Dendritic Cell/Myeloma Fusion Vaccine with Lenalidomide Maintenance in Increasing Multiple Myeloma (MM) Immunity (BMT) Tj ETQc	1100 7 843	14 ஜBT /Ove
34	Ex-Vivo Stimulation with DC/AML Fusion Vaccine in the Presence of Cytokines Leads to an Activated T Cell Memory Phenotype and Enhanced Cytotoxicity with Potential for Use As an Adoptive Cellular Therapy. Blood, 2018, 132, 2728-2728.	0.6	1
35	Targeting Acute Myeloid Leukemia Stem Cells by MUC1-C Subunit Inhibition. Blood, 2010, 116, 848-848.	0.6	1
36	MUC1-C Inhibition Leads to Decrease in PD-L1 Levels Via up-Regulation of Micro RNAs. Blood, 2016, 128, 2871-2871.	0.6	1

DINA STROOPINSKY

#	Article	lF	CITATIONS
37	Potent Synergy between Combination of Chimeric Antigen Receptor (CAR) Therapy Targeting CD19 in Conjunction with Dendritic Cell (DC)/Tumor Fusion Vaccine in Hematological Malignancies. Blood, 2019, 134, 3227-3227.	0.6	1
38	Profiling the Peripheral Blood Immune Cell Repertoire in Large-B Cell Lymphoma Patients Treated with CD19 CAR-T. Blood, 2021, 138, 2786-2786.	0.6	1
39	Post-Transplant Vaccination with a Personalized Dendritic Cell/AML Fusion Cell Vaccine for Prevention of Relapse. Blood, 2021, 138, 2830-2830.	0.6	1
40	MUC1 Inhibition Reverses the Poor Immunogenicity of Leukemia Stem Cells Rendering Them Susceptible to Immunotherapy. Blood, 2011, 118, 1883-1883.	0.6	0
41	Addition of Clofarabine to TLI/ATG Conditioning: Impact on Immune Reconstitution and Clinical Outcomes,. Blood, 2011, 118, 4066-4066.	0.6	0
42	Targeting Leukemia Initiating Cells by MUC1-C Subunit Inhibition. Blood, 2012, 120, 3583-3583.	0.6	0
43	STAT3 Inhibition Promotes Potent Th1 Responses By Down Regulating Pdl-1 Expression On Tumor Cells. Blood, 2013, 122, 3217-3217.	0.6	Ο
44	Co-Expression Of The MUC1 Oncoprotein and CD34 On Primary Myeloma Bone Marrow Cells Identifies a Population With Myeloma Initiating Potential. Blood, 2013, 122, 127-127.	0.6	0
45	MUC1 As a Potential Therapeutic Target in Cutaneous T-Cell Lymphoma. Blood, 2014, 124, 808-808.	0.6	Ο
46	Immunomodulatory Effect of SGI-110, a Novel Hypomethylating Agent in Acute Myeloid Leukemia (AML). Blood, 2014, 124, 2303-2303.	0.6	0
47	Myeloid-Derived Suppressor Cells Are Expanded in Patients with AML and Are Dependent on MUC1 Expression. Blood, 2014, 124, 226-226.	0.6	Ο
48	Bone Marrow Stroma Protects Myeloma Cells from Cytotoxic Damage Via Induction of the Oncoprotein MUC1. Blood, 2014, 124, 3378-3378.	0.6	0
49	MUC-1 Regulates MiR34a Expression in Acute Myeloid Leukemia Cells Resulting in an Accumulation of Granulocytic Myeloid-Derived Suppressor Cells. Blood, 2015, 126, 643-643.	0.6	Ο
50	Immunomodulatory Effect of MUC1-C in Acute Myeloid Leukemia. Blood, 2015, 126, 3659-3659.	0.6	0
51	Decitabine Priming Enhances Mucin 1 Inhibition Mediated Disruption of Redox Homeostasis in Cutaneous T-Cell Lymphoma. Blood, 2016, 128, 4175-4175.	0.6	Ο
52	Acute Myeloid Leukemia Cells Export c-Myc in Extracellular Vesicles Driving a Proliferation of Immune-Suppressive Myeloid-Derived Suppressor Cells. Blood, 2016, 128, 703-703.	0.6	0
53	A Novel Dendritic Cell-Derived Vaccine in Multiple Myeloma. Blood, 2016, 128, 4484-4484.	0.6	0
54	Transcriptome Sequencing Demonstrates Unique Signature Associated with Durable Clinical Response to DC/AML Fusion Vaccine. Blood, 2019, 134, 3832-3832.	0.6	0

#	Article	lF	CITATIONS
55	Treatment with DC/AML Fusion Vaccine and CD3xCD123 Bi-Specific T-Cell Engager (CD123-CODV-TCE) for Treatment of Acute Myeloid Leukemia. Blood, 2021, 138, 904-904.	0.6	0
56	Synergism between CAR-T Cells and a Personalized Tumor Vaccine in Hematological Malignances. Blood, 2021, 138, 737-737.	0.6	0
57	Vaccination with a Personalized Dendritic Cell/AML Fusion Cell Vaccine Following Allogeneic Transplantation in a Phase 1 Clinical Trial. Blood, 2020, 136, 10-10.	0.6	Ο