David G Russell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7060479/publications.pdf

Version: 2024-02-01

209 papers

21,823 citations

72 h-index 9839

g-index

241 all docs

241 docs citations

times ranked

241

17016 citing authors

#	Article	IF	Citations
1	Disseminated tuberculosis in interferon gamma gene-disrupted mice Journal of Experimental Medicine, 1993, 178, 2243-2247.	4.2	1,896
2	Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science, 1994, 263, 678-681.	6.0	1,258
3	Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature, 2000, 406, 735-738.	13.7	1,251
4	Foamy macrophages and the progression of the human tuberculosis granuloma. Nature Immunology, 2009, 10, 943-948.	7.0	673
5	Mycobacterium tuberculosis: here today, and here tomorrow. Nature Reviews Molecular Cell Biology, 2001, 2, 569-578.	16.1	662
6	Who puts the tubercle in tuberculosis?. Nature Reviews Microbiology, 2007, 5, 39-47.	13.6	540
7	On the molecular mechanism of chloroquine's antimalarial action Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 11865-11870.	3.3	454
8	Tuberculosis: What We Don't Know Can, and Does, Hurt Us. Science, 2010, 328, 852-856.	6.0	430
9	Growth of <i>Mycobacterium tuberculosis</i> in vivo segregates with host macrophage metabolism and ontogeny. Journal of Experimental Medicine, 2018, 215, 1135-1152.	4.2	421
10	Caseation of human tuberculosis granulomas correlates with elevated host lipid metabolism. EMBO Molecular Medicine, 2010, 2, 258-274.	3.3	417
11	Elemental Analysis of <i>Mycobacterium avium </i> , <i>Mycobacterium tuberculosis </i> , and <i>Mycobacterium smegmatis </i> -Containing Phagosomes Indicates Pathogen-Induced Microenvironments within the Host Cell's Endosomal System. Journal of Immunology, 2005, 174, 1491-1500.	0.4	389
12	Intracellular Mycobacterium tuberculosis Exploits Host-derived Fatty Acids to Limit Metabolic Stress. Journal of Biological Chemistry, 2013, 288, 6788-6800.	1.6	352
13	Mycobacterium tuberculosis Invasion of Macrophages: Linking Bacterial Gene Expression to Environmental Cues. Cell Host and Microbe, 2007, 2, 352-364.	5.1	344
14	Trafficking and Release of Mycobacterial Lipids from Infected Macrophages. Traffic, 2000, 1, 235-247.	1.3	316
15	<i>Mycobacterium tuberculosis</i> and the environment within the phagosome. Immunological Reviews, 2007, 219, 37-54.	2.8	314
16	Lysosomal killing of Mycobacterium mediated by ubiquitin-derived peptides is enhanced by autophagy. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6031-6036.	3.3	305
17	Isolation of Mycobacterium tuberculosis mutants defective in the arrest of phagosome maturation. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 13642-13647.	3.3	291
18	Immunometabolism at the interface between macrophages and pathogens. Nature Reviews Immunology, 2019, 19, 291-304.	10.6	285

#	Article	IF	Citations
19	The Interaction of Leishmania Species with Macrophages. Advances in Parasitology, 1992, 31, 175-254.	1.4	278
20	MARCO, TLR2, and CD14 Are Required for Macrophage Cytokine Responses to Mycobacterial Trehalose Dimycolate and Mycobacterium tuberculosis. PLoS Pathogens, 2009, 5, e1000474.	2.1	256
21	Novel Inhibitors of Cholesterol Degradation in Mycobacterium tuberculosis Reveal How the Bacterium's Metabolism Is Constrained by the Intracellular Environment. PLoS Pathogens, 2015, 11, e1004679.	2.1	245
22	Linking the Transcriptional Profiles and the Physiological States of Mycobacterium tuberculosis during an Extended Intracellular Infection. PLoS Pathogens, 2012, 8, e1002769.	2.1	241
23	Characterization of Activity and Expression of Isocitrate Lyase in <i>Mycobacterium avium</i> and <i>Mycobacterium tuberculosis</i> . Journal of Bacteriology, 1999, 181, 7161-7167.	1.0	241
24	<i>Mycobacterium tuberculosis</i> and the intimate discourse of a chronic infection. Immunological Reviews, 2011, 240, 252-268.	2.8	240
25	Complement receptor type 3 (CR3) binds to an Arg-Gly-Asp-containing region of the major surface glycoprotein, gp63, of Leishmania promastigotes Journal of Experimental Medicine, 1988, 168, 279-292.	4.2	238
26	Adherent and Invasive Escherichia coli Is Associated with Granulomatous Colitis in Boxer Dogs. Infection and Immunity, 2006, 74, 4778-4792.	1.0	235
27	Functional Genetic Diversity among Mycobacterium tuberculosis Complex Clinical Isolates: Delineation of Conserved Core and Lineage-Specific Transcriptomes during Intracellular Survival. PLoS Pathogens, 2010, 6, e1000988.	2.1	228
28	Effective immunization against cutaneous leishmaniasis with recombinant bacille Calmette-Guerin expressing the Leishmania surface proteinase gp63 Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 11473-11477.	3.3	211
29	Structure of isocitrate lyase, a persistence factor of Mycobacterium tuberculosis. Nature Structural Biology, 2000, 7, 663-668.	9.7	211
30	Infection by Tubercular Mycobacteria Is Spread by Nonlytic Ejection from Their Amoeba Hosts. Science, 2009, 323, 1729-1733.	6.0	203
31	Mycobacterial persistence: adaptation to a changing environment. Trends in Microbiology, 2001, 9, 597-605.	3.5	200
32	The Kinetics of Phagosome Maturation as a Function of Phagosome/Lysosome Fusion and Acquisition of Hydrolytic Activity. Traffic, 2005, 6, 413-420.	1,3	195
33	Phagosome Maturation Proceeds Independently of Stimulation of Toll-like Receptors 2 and 4. Immunity, 2005, 23, 409-417.	6.6	192
34	Mycobacterium bovis bacille Calmette-Guerin strains secreting listeriolysin of Listeria monocytogenes. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 5299-5304.	3.3	180
35	Cysteine protease inhibitors as chemotherapy: Lessons from a parasite target. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 11015-11022.	3.3	178
36	<i>aprABC</i> : a <i>Mycobacterium tuberculosis</i> complexâ€specific locus that modulates pHâ€driven adaptation to the macrophage phagosome. Molecular Microbiology, 2011, 80, 678-694.	1,2	176

#	Article	IF	Citations
37	In Vivo Activity of Released Cell Wall Lipids of <i>Mycobacterium bovis </i> Bacillus Calmette-Guelrin Is Due Principally to Trehalose Mycolates. Journal of Immunology, 2005, 174, 5007-5015.	0.4	173
38	Immune activation of the host cell induces drug tolerance in <i>Mycobacterium tuberculosis</i> both in vitro and in vivo. Journal of Experimental Medicine, 2016, 213, 809-825.	4.2	169
39	The macrophage marches on its phagosome: dynamic assays of phagosome function. Nature Reviews Immunology, 2009, 9, 594-600.	10.6	168
40	Small alveolar macrophages are infected preferentially by HIV and exhibit impaired phagocytic function. Mucosal Immunology, 2014, 7, 1116-1126.	2.7	168
41	Mycobacterium tuberculosis Wears What It Eats. Cell Host and Microbe, 2010, 8, 68-76.	5.1	166
42	Infection of macrophages with <i>Mycobacterium tuberculosis</i> induces global modifications to phagosomal function. Cellular Microbiology, 2013, 15, 843-859.	1.1	162
43	The promastigote surface protease (gp63) of Leishmania is expressed but differentially processed and localized in the amastigote stage. Molecular and Biochemical Parasitology, 1989, 37, 263-273.	0.5	156
44	Mycobacterium and the coat of many lipids. Journal of Cell Biology, 2002, 158, 421-426.	2.3	151
45	Acylation-dependent Protein Export inLeishmania. Journal of Biological Chemistry, 2000, 275, 11017-11025.	1.6	146
46	Identification of Mycobacterial Surface Proteins Released into Subcellular Compartments of Infected Macrophages. Infection and Immunity, 2000, 68, 6997-7002.	1.0	146
47	Dual RNA-Seq of Mtb-Infected Macrophages InÂVivo Reveals Ontologically Distinct Host-Pathogen Interactions. Cell Reports, 2020, 30, 335-350.e4.	2.9	146
48	Golgi GDP-mannose Uptake Requires Leishmania LPG2. Journal of Biological Chemistry, 1997, 272, 3799-3805.	1.6	141
49	Rv3723/LucA coordinates fatty acid and cholesterol uptake in Mycobacterium tuberculosis. ELife, 2017, 6, .	2.8	137
50	Genes encoding the major surface glycoprotein in Leishmania are tandemly linked at a single chromosomal locus and are constitutively transcribed. Molecular and Biochemical Parasitology, 1989, 32, 271-283.	0.5	132
51	Biochemical and Structural Studies of Malate Synthase fromMycobacterium tuberculosis. Journal of Biological Chemistry, 2003, 278, 1735-1743.	1.6	132
52	Mycobacterium tuberculosis Responds to Chloride and pH as Synergistic Cues to the Immune Status of its Host Cell. PLoS Pathogens, 2013, 9, e1003282.	2.1	131
53	Induction of ER Stress in Macrophages of Tuberculosis Granulomas. PLoS ONE, 2010, 5, e12772.	1.1	127
54	Vesicle Size Influences the Trafficking, Processing, and Presentation of Antigens in Lipid Vesicles. Journal of Immunology, 2004, 173, 6143-6150.	0.4	121

#	Article	IF	Citations
55	Structural characterization of cardiolipin by tandem quadrupole and multiple-stage quadrupole ion-trap mass spectrometry with electrospray ionization. Journal of the American Society for Mass Spectrometry, 2005, 16, 491-504.	1.2	119
56	Macrophage Activation Downregulates the Degradative Capacity of the Phagosome. Traffic, 2007, 8, 241-250.	1.3	119
57	Leishmania and the macrophage: a marriage of inconvenience. Trends in Immunology, 1989, 10, 328-333.	7.5	118
58	<i>Mycobacterium tuberculosis</i> Resides in Nonacidified Vacuoles in Endocytically Competent Alveolar Macrophages from Patients with Tuberculosis and HIV Infection. Journal of Immunology, 2004, 172, 4592-4598.	0.4	116
59	Characterization of the internalization of bacillus Calmette-Guerin by human bladder tumor cells Journal of Clinical Investigation, 1993, 91, 69-76.	3.9	116
60	Mycobacterial surface moieties are released from infected macrophages by a constitutive exocytic event. European Journal of Cell Biology, 2001, 80, 31-40.	1.6	114
61	Subpellicular and flagellar microtubules of Trypanosoma brucei brucei contain the same alpha-tubulin isoforms Journal of Cell Biology, 1987, 104, 431-438.	2.3	108
62	The macrophage-attachment glycoprotein gp63 is the predominant C3-acceptor site on Leishmania mexicana promastigotes. FEBS Journal, 1987, 164, 213-221.	0.2	103
63	Identification and macrophage-activating activity of glycolipids released from intracellular Mycobacterium bovis BCG. Molecular Microbiology, 2003, 48, 875-888.	1.2	99
64	Household Air Pollution Causes Dose-Dependent Inflammation and Altered Phagocytosis in Human Macrophages. American Journal of Respiratory Cell and Molecular Biology, 2015, 52, 584-593.	1.4	90
65	Pathway Profiling in Mycobacterium tuberculosis. Journal of Biological Chemistry, 2011, 286, 43668-43678.	1.6	89
66	Enhanced Permeability and Retention-like Extravasation of Nanoparticles from the Vasculature into Tuberculosis Granulomas in Zebrafish and Mouse Models. ACS Nano, 2018, 12, 8646-8661.	7.3	89
67	The Mycobacterium tuberculosis ino 1 gene is essential for growth and virulence. Molecular Microbiology, 2004, 51, 1003-1014.	1.2	85
68	pckA-deficient Mycobacterium bovis BCG shows attenuated virulence in mice and in macrophages. Microbiology (United Kingdom), 2003, 149, 1829-1835.	0.7	85
69	Phagosomes, fatty acids and tuberculosis. Nature Cell Biology, 2003, 5, 776-778.	4.6	84
70	Intraphagosomal Measurement of the Magnitude and Duration of the Oxidative Burst. Traffic, 2009, 10, 372-378.	1.3	84
71	The interaction betweenMycobacterium and the macrophage analyzed by two-dimensional polyacrylamide gel electrophoresis. Electrophoresis, 1997, 18, 2558-2565.	1.3	83
72	Lesion-Specific Immune Response in Granulomas of Patients with Pulmonary Tuberculosis: A Pilot Study. PLoS ONE, 2015, 10, e0132249.	1.1	83

#	Article	IF	CITATIONS
73	Structually distinct genes for the surface protease of Leishmania mexicana are developmentally regulated. Molecular and Biochemical Parasitology, 1993, 57, 31-45.	0.5	79
74	Mycobacterium and Leishmania: stowaways in the endosomal network. Trends in Cell Biology, 1995, 5, 125-128.	3.6	78
75	Exploitation of Mycobacterium tuberculosis Reporter Strains to Probe the Impact of Vaccination at Sites of Infection. PLoS Pathogens, 2014, 10, e1004394.	2.1	78
76	Triggering MSR1 promotes JNKâ€mediated inflammation in ILâ€4â€activated macrophages. EMBO Journal, 2019, 38, .	3.5	78
77	Single cell analysis of <i>M. tuberculosis</i> phenotype and macrophage lineages in the infected lung. Journal of Experimental Medicine, 2021, 218, .	4.2	75
78	Association of a macrophage galactoside-binding protein with Mycobacterium-containing phagosomes. Cellular Microbiology, 2002, 4, 167-176.	1.1	74
79	Perforin-2 is essential for intracellular defense of parenchymal cells and phagocytes against pathogenic bacteria. ELife, 2015, 4, .	2.8	71
80	Decreased outer membrane permeability protects mycobacteria from killing by ubiquitinâ€derived peptides. Molecular Microbiology, 2009, 73, 844-857.	1.2	69
81	Direct delivery of procathepsin D to phagosomes: Implications for phagosome biogenesis and parasitism by Mycobacterium. European Journal of Cell Biology, 1999, 78, 739-748.	1.6	67
82	<i>Mycobacterium tuberculosis</i> : Bacterial Fitness within the Host Macrophage. Microbiology Spectrum, 2019, 7, .	1.2	64
83	Cell wall lipids from Mycobacterium bovis BCG are inflammatory when inoculated within a gel matrix: Characterization of a new model of the granulomatous response to mycobacterial components. Tuberculosis, 2005, 85, 159-176.	0.8	63
84	Real-Time Spectrofluorometric Assays for the Lumenal Environment of the Maturing Phagosome. Methods in Molecular Biology, 2008, 445, 311-325.	0.4	63
85	The genetic requirements of fatty acid import by Mycobacterium tuberculosis within macrophages. ELife, 2019, 8, .	2.8	56
86	Edaxadiene: A New Bioactive Diterpene from Mycobacterium tuberculosis. Journal of the American Chemical Society, 2009, 131, 17526-17527.	6.6	55
87	Inhibition of the IncRNA SAF drives activation of apoptotic effector caspases in HIV-1–infected human macrophages. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7431-7438.	3.3	55
88	Interaction of <i>Mycobacterium avium </i> -Containing Phagosomes with the Antigen Presentation Pathway. Journal of Immunology, 2000, 165, 6073-6080.	0.4	54
89	Crithidia fasciculata contains a transcribed leishmanial surface proteinase (gp63) gene homologue. Molecular and Biochemical Parasitology, 1993, 57, 47-54.	0.5	52
90	Structural characterization of phosphatidyl-myo-inositol mannosides from Mycobacterium bovis bacillus calmette $g\tilde{A}^\circ$ erin by multiple-stage quadrupole ion-trap mass spectrometry with electrospray ionization. II. Monoacyl- and diacyl-PIMs. Journal of the American Society for Mass Spectrometry, 2007, 18, 479-492.	1.2	52

#	Article	IF	Citations
91	Matrix metalloproteinase inhibitors enhance the efficacy of frontline drugs against Mycobacterium tuberculosis. PLoS Pathogens, 2018, 14, e1006974.	2.1	50
92	Defects in neutrophil granule mobilization and bactericidal activity in familial hemophagocytic lymphohistiocytosis type 5 (FHL-5) syndrome caused by STXBP2/Munc18-2 mutations. Blood, 2013, 122, 109-111.	0.6	49
93	The HIV-1 protein Vpr impairs phagosome maturation by controlling microtubule-dependent trafficking. Journal of Cell Biology, 2015, 211, 359-372.	2.3	49
94	Structural characterization of phosphatidyl-myo-inositol mannosides from Mycobacterium bovis bacillus calmette guÃ@rin by multiple-stage quadrupole ion-trap mass spectrometry with electrospray ionization. I. PIMs and lyso-PIMs. Journal of the American Society for Mass Spectrometry, 2007, 18, 466-478.	1.2	48
95	Asymptomatic HIV-infected Individuals on Antiretroviral Therapy Exhibit Impaired Lung CD4 ⁺ T-Cell Responses to Mycobacteria. American Journal of Respiratory and Critical Care Medicine, 2014, 190, 938-947.	2.5	48
96	Intraphagosomal measurement of the magnitude and duration of the oxidative burst Traffic, 2009, 10, 372-8.	1.3	48
97	Chapter 14: Isolation and Characterization of Pathogen-Containing Phagosomes. Methods in Cell Biology, 1995, 45, 261-276.	0.5	47
98	Why intracellular parasitism need not be a degrading experience for Mycobacterium. Philosophical Transactions of the Royal Society B: Biological Sciences, 1997, 352, 1303-1310.	1.8	46
99	Genetic Toggling of Alkaline Phosphatase Folding Reveals Signal Peptides for All Major Modes of Transport across the Inner Membrane of Bacteria. Journal of Biological Chemistry, 2008, 283, 35223-35235.	1.6	43
100	MARCO variants are associated with phagocytosis, pulmonary tuberculosis susceptibility and Beijing lineage. Genes and Immunity, 2016, 17, 419-425.	2.2	41
101	Mycobacterial Trehalose Dimycolate Reprograms Macrophage Global Gene Expression and Activates Matrix Metalloproteinases. Infection and Immunity, 2013, 81, 764-776.	1.0	39
102	Transcriptional responses of Mycobacterium tuberculosis to lung surfactant. Microbial Pathogenesis, 2009, 46, 185-193.	1.3	38
103	Expression of the filarial nematode phosphorylcholine-containing glycoprotein, ES62, is stage specific. Parasitology, 2002, 125, 155-164.	0.7	37
104	The evolutionary pressures that have molded Mycobacterium tuberculosis into an infectious adjuvant. Current Opinion in Microbiology, 2013, 16, 78-84.	2.3	37
105	The Minimal Unit of Infection: <i>Mycobacterium tuberculosis</i> i>in the Macrophage. Microbiology Spectrum, 2016, 4, .	1.2	35
106	Mycobacterium tuberculosis arrests host cycle at the G1/S transition to establish long term infection. PLoS Pathogens, 2017, 13, e1006389.	2.1	35
107	Leishmania mexicana mexicana gp63 is a site-specific neutral endopeptidase. Molecular and Biochemical Parasitology, 1990, 40, 163-172.	0.5	33
108	Kinetics of phosphatidylinositol-3-phosphate acquisition differ between IgG bead-containing phagosomes and Mycobacterium tuberculosis-containing phagosomes. Cellular Microbiology, 2005, 7, 1627-1634.	1.1	32

#	Article	IF	Citations
109	The Tuberculosis Drug Accelerator at year 10: what have we learned?. Nature Medicine, 2021, 27, 1333-1337.	15.2	32
110	Transâ€species communication in the <i><scp>M</scp>ycobacterium tuberculosisâ€</i> i>infected macrophage. Immunological Reviews, 2015, 264, 233-248.	2.8	30
111	Pathogenic mycobacteria achieve cellular persistence by inhibiting the Niemann-Pick Type C disease cellular pathway. Wellcome Open Research, 0, 1, 18.	0.9	30
112	Lysosomal ubiquitin and the demise of Mycobacterium tuberculosis. Cellular Microbiology, 2007, 9, 2768-2774.	1.1	29
113	Protective immunity against tuberculosis: what does it look like and how do we find it?. Current Opinion in Immunology, 2017, 48, 44-50.	2.4	28
114	Pathogenic mycobacteria achieve cellular persistence by inhibiting the Niemann-Pick Type C disease cellular pathway. Wellcome Open Research, 2016, 1, 18.	0.9	26
115	Dynamic Quantitative Assays of Phagosomal Function. Current Protocols in Immunology, 2013, 102, 14.34.1-14.34.14.	3.6	25
116	The ins and outs of the <i>Mycobacterium tuberculosis </i> Microbiology, 2016, 18, 1065-1069.	1.1	25
117	Toll-like receptors and phagosome maturation. Nature Immunology, 2007, 8, 217-217.	7. O	24
118	The Deconstructed Granuloma: A Complex High-Throughput Drug Screening Platform for the Discovery of Host-Directed Therapeutics Against Tuberculosis. Frontiers in Cellular and Infection Microbiology, 2018, 8, 275.	1.8	24
119	Recording Phagosome Maturation Through the Real-Time, Spectrofluorometric Measurement of Hydrolytic Activities. Methods in Molecular Biology, 2009, 531, 157-171.	0.4	24
120	Peripheral cell wall lipids of Mycobacterium tuberculosis are inhibitory to surfactant function. Tuberculosis, 2008, 88, 178-186.	0.8	23
121	New ways to arrest phagosome maturation. Nature Cell Biology, 2007, 9, 357-359.	4.6	21
122	TLR signalling and phagosome maturation: an alternative viewpoint. Cellular Microbiology, 2007, 9, 849-850.	1.1	20
123	Nutrition and the Gut Microbiota in 10- to 18-Month-Old Children Living in Urban Slums of Mumbai, India. MSphere, 2020, 5, .	1.3	20
124	Chapter 15: Immunoelectron Microscopy of Endosomal Trafficking in Macrophages Infected with Microbial Pathogens. Methods in Cell Biology, 1995, 45, 277-288.	0.5	19
125	Fibrinogen Regulates the Cytotoxicity of Mycobacterial Trehalose Dimycolate but Is Not Required for Cell Recruitment, Cytokine Response, or Control of Mycobacterial Infection. Infection and Immunity, 2010, 78, 1004-1011.	1.0	18
126	Heterogeneous loss of HIV transcription and proviral DNA from 8E5/LAV lymphoblastic leukemia cells revealed by RNA FISH:FLOW analyses. Retrovirology, 2016, 13, 55.	0.9	18

#	Article	IF	CITATIONS
127	M. tuberculosis Rv2252 encodes a diacylglycerol kinase involved in the biosynthesis of phosphatidylinositol mannosides (PIMs). Molecular Microbiology, 2006, 60, 1152-1163.	1.2	17
128	Lnc(ing)RNAs to the "shock and kill―strategy for HIV-1 cure. Molecular Therapy - Nucleic Acids, 2021, 23, 1272-1280.	2.3	17
129	Novel protein acetyltransferase, Rv2170, modulates carbon and energy metabolism in Mycobacterium tuberculosis. Scientific Reports, 2017, 7, 72.	1.6	16
130	Leprosy research in the post-genome era. Leprosy Review, 2001, 72, 8-22.	0.1	16
131	TB comes to a sticky beginning. Nature Medicine, 2001, 7, 894-895.	15.2	15
132	Equine bronchial epithelial cells differentiate into ciliated and mucus producing cells in vitro. In Vitro Cellular and Developmental Biology - Animal, 2010, 46, 102-106.	0.7	15
133	What does`inhibition of phagosome–lysosome fusion' really mean?. Trends in Microbiology, 1998, 6, 212-214.	3.5	14
134	Staphylococcus and the Healing Power of Pus. Cell Host and Microbe, 2008, 3, 115-116.	5.1	14
135	Functional Analysis of Phagocyte Activity in Whole Blood from HIV/Tuberculosis-Infected Individuals Using a Novel Flow Cytometry-Based Assay. Frontiers in Immunology, 2017, 8, 1222.	2.2	14
136	Interleukin-2-Inducible T-Cell Kinase Deficiency Impairs Early Pulmonary Protection Against Mycobacterium tuberculosis Infection. Frontiers in Immunology, 2019, 10, 3103.	2.2	14
137	Association between sputum smear status and local immune responses at the site of disease in HIV-infected patients with pulmonary tuberculosis. Tuberculosis, 2008, 88, 58-63.	0.8	13
138	Chronic Household Air Pollution Exposure Is Associated with Impaired Alveolar Macrophage Function in Malawian Non-Smokers. PLoS ONE, 2015, 10, e0138762.	1.1	13
139	Mycobacterium tuberculosis: Readouts of Bacterial Fitness and the Environment Within the Phagosome. Methods in Molecular Biology, 2017, 1519, 333-347.	0.4	13
140	Iron limitation in M. tuberculosis has broad impact on central carbon metabolism. Communications Biology, 2022, 5, .	2.0	13
141	Sequence Requirements for Trafficking of the CRAM Transmembrane Protein to the Flagellar Pocket of African Trypanosomes. Molecular and Cellular Biology, 2000, 20, 5149-5163.	1.1	12
142	Ubiquitin Trafficking to the Lysosome: Keeping the House Tidy and Getting Rid of Unwanted Guests. Autophagy, 2007, 3, 399-401.	4.3	12
143	Development of a novel, cellâ€based chemical screen to identify inhibitors of intraphagosomal lipolysis in macrophages. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2010, 77A, 751-760.	1.1	11
144	Alveolar macrophages from HIV-infected patients with pulmonary tuberculosis retain the capacity to respond to stimulation by lipopolysaccharide. Microbes and Infection, 2007, 9, 1053-1060.	1.0	10

#	Article	IF	CITATIONS
145	Recombinase-based reporter system and antisense technology to study gene expression and essentiality in hypoxic nonreplicating mycobacteria. FEMS Microbiology Letters, 2008, 284, 68-75.	0.7	10
146	Growing and Handling of Mycobacterium tuberculosis for Macrophage Infection Assays. Methods in Molecular Biology, 2017, 1519, 325-331.	0.4	10
147	Exploitation of Synthetic mRNA To Drive Immune Effector Cell Recruitment and Functional Reprogramming In Vivo. Journal of Immunology, 2019, 202, 608-617.	0.4	9
148	Dual RNA-Sequencing of Mycobacterium tuberculosis-Infected Cells from a Murine Infection Model. STAR Protocols, 2020, 1, 100123.	0.5	9
149	Highlighting the Parallels between Human and Bovine Tuberculosis. Journal of Veterinary Medical Education, 2003, 30, 140-142.	0.4	8
150	Trp'ing Tuberculosis. Cell, 2013, 155, 1209-1210.	13.5	8
151	Mycobacterium and the Seduction of the Macrophage. , 0, , 371-388.		7
152	HIV-associated disruption of lung cytokine networks is incompletely restored in asymptomatic HIV-infected Malawian adults on antiretroviral therapy. ERJ Open Research, 2017, 3, 00097-2017.	1.1	7
153	Flow Cytometric Quantification of Fatty Acid Uptake by Mycobacterium tuberculosis in Macrophages. Bio-protocol, 2018, 8, .	0.2	7
154	Leishmania and the macrophage. Trends in Immunology, 1990, 11, 74-75.	7.5	6
155	The Galvanizing of Mycobacterium tuberculosis: An Antimicrobial Mechanism. Cell Host and Microbe, 2011, 10, 181-183.	5.1	6
156	Quantification of Mycobacterium avium subsp. paratuberculosis (MAP) survival in monocyte-derived macrophages. Veterinary Immunology and Immunopathology, 2011, 139, 73-78.	0.5	6
157	Host transcriptional responses following ex vivo re-challenge with Mycobacterium tuberculosis vary with disease status. PLoS ONE, 2017, 12, e0185640.	1.1	6
158	Nutritional assessment among adult patients with suspected or confirmed active tuberculosis disease in rural India. PLoS ONE, 2020, 15, e0233306.	1.1	6
159	Mycobacterium tuberculosis. , 2020, , 127-138.		5
160	Perspective: Graduation time. Nature, 2013, 502, S7-S7.	13.7	4
161	2-N-Arylthiazole inhibitors of Mycobacterium tuberculosis. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 3987-3991.	1.0	4
162	In Vitro Miniaturized Tuberculosis Spheroid Model. Biomedicines, 2021, 9, 1209.	1.4	4

#	Article	IF	Citations
163	Analysis of Mycobacterium-Infected Macrophages by Immunoelectron Microscopy and Cell Fractionation., 2001, 54, 281-293.		3
164	The Sculpting of the <i>Mycobacterium tuberculosis</i> Genome by Host Cell–Derived Pressures. Microbiology Spectrum, 2014, 2, .	1.2	3
165	Detection and quantification of microbial manipulation of phagosomal function. Methods in Cell Biology, 2015, 126, 305-329.	0.5	3
166	The Minimal Unit of Infection: <i>Mycobacterium tuberculosis</i> i>in the Macrophage., 0,, 635-652.		3
167	Cellular <scp>M</scp> icrobiology: The metabolic interface between host cell and pathogen. Cellular Microbiology, 2019, 21, e13075.	1.1	3
168	TZM-gfp cells: a tractable fluorescent tool for analysis of rare and early HIV-1 infection. Scientific Reports, 2020, 10, 19900.	1.6	3
169	Neutrophils Forever …., 0,, 1-26.		3
170	The Parasite Point of View: Insights and Questions on the Cell Biology of Trypanosoma and Leishmania Parasite-Phagocyte Interactions., 0,, 453-462.		3
171	Alveolar T-helper 17 responses to streptococcus pneumoniae are preserved in ART-untreated and treated HIV-infected Malawian adults. Journal of Infection, 2018, 76, 168-176.	1.7	2
172	Recognition and Removal of Apoptotic Cells. , 0, , 341-P1.		2
173	Diversity breeds tolerance. Nature, 2017, 546, 44-45.	13.7	1
174	A novel, sensitive dual-indicator cell line for detection and quantification of inducible, replication-competent latent HIV-1 from reservoir cells. Scientific Reports, 2019, 9, 19325.	1.6	1
175	Membrane Trafficking during Phagosome Formation and Maturation. , 0, , 209-223.		1
176	Regulation and Antimicrobial Function of Inducible Nitric Oxide Synthase in Phagocytes., 0,, 367-378.		1
177	<i>Dictyostelium discoideum</i> : a Model Phagocyte and a Model for Host-Pathogen Interactions. , 0, , 491-P1.		1
178	Nutrition, Inflammation, and the Gut Microbiota among Outpatients with Active Tuberculosis Disease in India. American Journal of Tropical Medicine and Hygiene, 2021, , .	0.6	1
179	Cell Biological Approaches to the Study of Intracellular Pathogens: Motility, Invasion, Secretion and Vesicular Trafficking. , 2000, , 213-254.		1
180	Monitoring the Granulomal Micro-environment in a Monkey Model of Tuberculosis Using a Novel Fluorescence Bronchoscope. Biophysical Journal, 2009, 96, 297a.	0.2	0

#	Article	IF	CITATIONS
181	Signaling for Phagocytosis. , 2014, , 193-P2.		O
182	Legionella pneumophila, a Pathogen of Amoebae and Macrophages. , 2014, , 393-403.		0
183	The Role of Phagocytic Cells during Shigella Invasion of the Colonic Mucosa. , 2014, , 405-418.		0
184	Tuberculosis Progression Does Not Necessarily Equate with a Failure of Immune Control. Microorganisms, 2019, 7, 185.	1.6	0
185	Nutritional Status and Measles Antibody Titer in Children Living in Urban Slums of Mumbai. Current Developments in Nutrition, 2020, 4, nzaa068_009.	0.1	0
186	The Multiple Interactions between Salmonella and Phagocytes. , 0, , 379-P1.		0
187	Leukocyte Chemotaxis., 0,, 183-192.		0
188	Fc Receptors and Phagocytosis. , 0, , 69-92.		0
189	Brucella, a Perfect Trojan Horse in Phagocytes. , 0, , 427-435.		O
190	Phagocyte Interactions with the Intracellular Protozoan Toxoplasma gondii., 0,, 463-476.		0
191	Macrophages: Microbial Recognition and Response. , 0, , 27-50.		0
192	Acidification of Endosomes and Phagosomes. , 0, , 225-233.		0
193	Novel Anti-Inflammatory and Proresolution Lipid Mediators in Induction and Modulation of Phagocyte Function., 0,, 265-280.		0
194	Cytokines and Macrophages and Dendritic Cells: Key Modulators of Immune Responses., 0,, 281-299.		0
195	Chemokines and Phagocyte Trafficking. , 0, , 93-106.		0
196	Macrophage Classical Activation. , 0, , 301-323.		0
197	Intracytosolic Sensing of Pathogens: Nucleic Acid Receptors, NLRs, and the Associated Responses during Infections and Autoinflammatory Diseases., 0,, 153-169.		0
198	Dendritic Cells and Their Tissue Microenvironment during Exposure to Pathogens., 0,, 51-68.		0

#	Article	IF	CITATIONS
199	Where To Stay inside the Cell: a Homesteader's Guide to Intracellular Parasitism. , 0, , 227-253.		O
200	The Functional Heterogeneity of Activated Macrophages. , 0, , 325-340.		0
201	Phagocytes Are a Source of the Fluid-Phase Pattern Recognition Receptor PTX3: Interplay between Cellular and Humoral Innate Immunity. , 0, , 171-P2.		O
202	Functional Analysis of the Intraphagosomal Environment of the Macrophage: Fluorogenic Reporters and the Transcriptional Responses of Salmonella and Mycobacterium spp , 0, , 249-264.		0
203	The Zebrafish as a Model of Host-Pathogen Interactions. , 0, , 523-P1.		O
204	Interaction of Candida albicans with Phagocytes. , 0, , 437-P1.		0
205	Whole Genome Screens in Macrophages. , 0, , 537-543.		O
206	Actin-Based Motility in Professional Phagocytes. , 0, , 235-248.		0
207	Integrins on Phagocytes. , 0, , 137-152.		O
208	Toll-Like Receptors., 0,, 107-122.		0
209	The Sculpting of the Mycobacterium tuberculosis Genome by Host Cell-Derived Pressures. , 0, , 727-745.		O