Richard P Morrison

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7060108/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Immunity to Murine Chlamydial Genital Infection. Infection and Immunity, 2002, 70, 2741-2751.	1.0	382
2	Immunity to Murine Chlamydia trachomatis Genital Tract Reinfection Involves B Cells and CD4 + T Cells but Not CD8 + T Cells. Infection and Immunity, 2000, 68, 6979-6987.	1.0	225
3	A Predominant Role for Antibody in Acquired Immunity to Chlamydial Genital Tract Reinfection. Journal of Immunology, 2005, 175, 7536-7542.	0.4	200
4	A Vaccine and Monoclonal Antibodies That Enhance Mouse Resistance to <i>Candida albicans</i> Vaginal Infection. Infection and Immunity, 1998, 66, 5771-5776.	1.0	180
5	In Situ Analysis of the Evolution of the Primary Immune Response in Murine Chlamydia trachomatis Genital Tract Infection. Infection and Immunity, 2000, 68, 2870-2879.	1.0	107
6	Vaccination against <i>Chlamydia</i> Genital Infection Utilizing the Murine <i>C. muridarum</i> Model. Infection and Immunity, 2011, 79, 986-996.	1.0	104
7	Resolution of Secondary Chlamydia trachomatis Genital Tract Infection in Immune Mice with Depletion of Both CD4+ and CD8+ T cells. Infection and Immunity, 2001, 69, 2643-2649.	1.0	96
8	CD4 ⁺ T Cells and Antibody Are Required for Optimal Major Outer Membrane Protein Vaccine-Induced Immunity to <i>Chlamydia muridarum</i> Genital Infection. Infection and Immunity, 2010, 78, 4374-4383.	1.0	83
9	Chlamydial Virulence Determinants in Atherogenesis: The Role of Chlamydial Lipopolysaccharide and Heat Shock Protein 60 in Macrophageâ€Lipoprotein Interactions. Journal of Infectious Diseases, 2000, 181, S483-S489.	1.9	82
10	Differential Sensitivities of Chlamydia trachomatis Strains to Inhibitory Effects of Gamma Interferon. Infection and Immunity, 2000, 68, 6038-6040.	1.0	80
11	New insights into a persistent problem — chlamydial infections. Journal of Clinical Investigation, 2003, 111, 1647-1649.	3.9	56
12	Immunoglobulin-Specific Responses to Chlamydia Elementary Bodies in Individuals with and at Risk for Genital Chlamydial Infection. Journal of Infectious Diseases, 2012, 206, 1836-1843.	1.9	46
13	Mutational Analysis of the Chlamydia muridarum Plasticity Zone. Infection and Immunity, 2015, 83, 2870-2881.	1.0	46
14	Gamma Interferon Is Required for Optimal Antibody-Mediated Immunity against Genital Chlamydia Infection. Infection and Immunity, 2016, 84, 3232-3242.	1.0	42
15	Murine Chlamydia trachomatis Genital Infection Is Unaltered by Depletion of CD4+ T cells and Diminished Adaptive Immunity. Journal of Infectious Diseases, 2011, 203, 1120-1128.	1.9	41
16	Nonpathogenic Colonization with Chlamydia in the Gastrointestinal Tract as Oral Vaccination for Inducing Transmucosal Protection. Infection and Immunity, 2018, 86, .	1.0	41
17	Neutrophils Are Central to Antibody-Mediated Protection against Genital Chlamydia. Infection and Immunity, 2017, 85, .	1.0	34
18	The Protective Effect of Antibody in Immunity to Murine Chlamydial Genital Tract Reinfection Is Independent of Immunoglobulin A. Infection and Immunity, 2005, 73, 6183-6186.	1.0	32

RICHARD P MORRISON

#	Article	IF	CITATIONS
19	Genetic Screen in Chlamydia muridarum Reveals Role for an Interferon-Induced Host Cell Death Program in Antimicrobial Inclusion Rupture. MBio, 2019, 10, .	1.8	19
20	A Genital Infection-Attenuated Chlamydia muridarum Mutant Infects the Gastrointestinal Tract and Protects against Genital Tract Challenge. MBio, 2020, 11, .	1.8	16
21	Chlamydia muridarum Genital and Gastrointestinal Infection Tropism Is Mediated by Distinct Chromosomal Factors. Infection and Immunity, 2018, 86, .	1.0	13
22	Prevalence of Chlamydia trachomatis Infection in Young Women and Associated Predictors. Sexually Transmitted Diseases, 2021, 48, 529-535.	0.8	6