
## Yaxuan Jing

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7059788/publications.pdf Version: 2024-02-01



YAYUAN LINC

| #  | Article                                                                                                                                                                                                 | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | NbO <sub><i>x</i></sub> -Based Catalysts for the Activation of C–O and C–C Bonds in the Valorization of Waste Carbon Resources. Accounts of Chemical Research, 2022, 55, 1301-1312.                     | 15.6 | 30        |
| 2  | Towards the Circular Economy: Converting Aromatic Plastic Waste Back to Arenes over a<br>Ru/Nb <sub>2</sub> O <sub>5</sub> Catalyst. Angewandte Chemie - International Edition, 2021, 60,<br>5527-5535. | 13.8 | 169       |
| 3  | Towards the Circular Economy: Converting Aromatic Plastic Waste Back to Arenes over a Ru/Nb 2 O 5<br>Catalyst. Angewandte Chemie, 2021, 133, 5587-5595.                                                 | 2.0  | 42        |
| 4  | H <sub>2</sub> â€free Plastic Conversion: Converting PET back to BTX by Unlocking Hidden Hydrogen.<br>ChemSusChem, 2021, 14, 4242-4250.                                                                 | 6.8  | 50        |
| 5  | Recovery of Arenes from Polyethylene Terephthalate (PET) over a Co/TiO <sub>2</sub> Catalyst.<br>ChemSusChem, 2021, 14, 4330-4339.                                                                      | 6.8  | 31        |
| 6  | Plastic waste to drug intermediate: targeted cleavage of C–O bonds in polyphenylene oxide to<br>3,5-dimethyl phenol. Green Chemistry, 2021, 23, 9640-9645.                                              | 9.0  | 13        |
| 7  | Chemicals from Lignin: A Review of Catalytic Conversion Involving Hydrogen. ChemSusChem, 2020, 13, 4181-4198.                                                                                           | 6.8  | 126       |
| 8  | Catalytic Hydrodeoxygenation of Lignin-Derived Feedstock Into Arenes and Phenolics. Frontiers in<br>Chemical Engineering, 2020, 2, .                                                                    | 2.7  | 7         |
| 9  | Highly efficient alloyed NiCu/Nb <sub>2</sub> O <sub>5</sub> catalyst for the hydrodeoxygenation of biofuel precursors into liquid alkanes. Catalysis Science and Technology, 2020, 10, 4256-4263.      | 4.1  | 22        |
| 10 | Selective production of indane and its derivatives from lignin over a modified niobium-based catalyst.<br>Chemical Communications, 2019, 55, 9391-9394.                                                 | 4.1  | 31        |
| 11 | Highly efficient Nb2O5 catalyst for aldol condensation of biomass-derived carbonyl molecules to fuel precursors. Chinese Journal of Catalysis, 2019, 40, 1168-1177.                                     | 14.0 | 55        |
| 12 | Catalytic Production of Value-Added Chemicals and Liquid Fuels from Lignocellulosic Biomass. CheM, 2019, 5, 2520-2546.                                                                                  | 11.7 | 337       |
| 13 | Boosting the utilization efficiency of glucose <i>via</i> a favored C–C coupling reaction. Green Chemistry, 2019, 21, 6236-6240.                                                                        | 9.0  | 7         |
| 14 | Robinson Annulation-Directed Synthesis of Jet-Fuel-Ranged Alkylcyclohexanes from Biomass-Derived<br>Chemicals. ACS Catalysis, 2018, 8, 3280-3285.                                                       | 11.2 | 58        |
| 15 | Production of Lowâ€Freezingâ€Point Highly Branched Alkanes through Michael Addition. ChemSusChem,<br>2017, 10, 4817-4823.                                                                               | 6.8  | 34        |