Yaxuan Jing

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7059788/publications.pdf

Version: 2024-02-01

		759233	996975	
15	1,012	12	15	
papers	citations	h-index	g-index	
16	16	16	882	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Catalytic Production of Value-Added Chemicals and Liquid Fuels from Lignocellulosic Biomass. CheM, 2019, 5, 2520-2546.	11.7	337
2	Towards the Circular Economy: Converting Aromatic Plastic Waste Back to Arenes over a Ru/Nb ₂ O ₅ Catalyst. Angewandte Chemie - International Edition, 2021, 60, 5527-5535.	13.8	169
3	Chemicals from Lignin: A Review of Catalytic Conversion Involving Hydrogen. ChemSusChem, 2020, 13, 4181-4198.	6.8	126
4	Robinson Annulation-Directed Synthesis of Jet-Fuel-Ranged Alkylcyclohexanes from Biomass-Derived Chemicals. ACS Catalysis, 2018, 8, 3280-3285.	11.2	58
5	Highly efficient Nb2O5 catalyst for aldol condensation of biomass-derived carbonyl molecules to fuel precursors. Chinese Journal of Catalysis, 2019, 40, 1168-1177.	14.0	55
6	H ₂ â€free Plastic Conversion: Converting PET back to BTX by Unlocking Hidden Hydrogen. ChemSusChem, 2021, 14, 4242-4250.	6.8	50
7	Towards the Circular Economy: Converting Aromatic Plastic Waste Back to Arenes over a Ru/Nb 2 O 5 Catalyst. Angewandte Chemie, 2021, 133, 5587-5595.	2.0	42
8	Production of Lowâ€Freezingâ€Point Highly Branched Alkanes through Michael Addition. ChemSusChem, 2017, 10, 4817-4823.	6.8	34
9	Selective production of indane and its derivatives from lignin over a modified niobium-based catalyst. Chemical Communications, 2019, 55, 9391-9394.	4.1	31
10	Recovery of Arenes from Polyethylene Terephthalate (PET) over a Co/TiO ₂ Catalyst. ChemSusChem, 2021, 14, 4330-4339.	6.8	31
11	NbO _{<i>x</i>} -Based Catalysts for the Activation of C–O and C–C Bonds in the Valorization of Waste Carbon Resources. Accounts of Chemical Research, 2022, 55, 1301-1312.	15.6	30
12	Highly efficient alloyed NiCu/Nb ₂ O ₅ catalyst for the hydrodeoxygenation of biofuel precursors into liquid alkanes. Catalysis Science and Technology, 2020, 10, 4256-4263.	4.1	22
13	Plastic waste to drug intermediate: targeted cleavage of C–O bonds in polyphenylene oxide to 3,5-dimethyl phenol. Green Chemistry, 2021, 23, 9640-9645.	9.0	13
14	Boosting the utilization efficiency of glucose <i>via</i> a favored C–C coupling reaction. Green Chemistry, 2019, 21, 6236-6240.	9.0	7
15	Catalytic Hydrodeoxygenation of Lignin-Derived Feedstock Into Arenes and Phenolics. Frontiers in Chemical Engineering, 2020, 2, .	2.7	7