
## Hye-Seon Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7059718/publications.pdf Version: 2024-02-01



HVE-SEON KIM

| #  | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | A two-locus DNA sequence database for typing plant and human pathogens within the Fusarium oxysporum species complex. Fungal Genetics and Biology, 2009, 46, 936-948.                                           | 0.9 | 275       |
| 2  | Sniffing on Microbes: Diverse Roles of Microbial Volatile Organic Compounds in Plant Health.<br>Molecular Plant-Microbe Interactions, 2013, 26, 835-843.                                                        | 1.4 | 269       |
| 3  | Identification of Deoxynivalenol- and Nivalenol-Producing Chemotypes of Gibberella zeae by Using PCR. Applied and Environmental Microbiology, 2001, 67, 2966-2972.                                              | 1.4 | 161       |
| 4  | Evolution of structural diversity of trichothecenes, a family of toxins produced by plant pathogenic and entomopathogenic fungi. PLoS Pathogens, 2018, 14, e1006946.                                            | 2.1 | 141       |
| 5  | Phylogenomic Analysis of a 55.1-kb 19-Gene Dataset Resolves a Monophyletic <i>Fusarium</i> that<br>Includes the <i>Fusarium solani</i> Species Complex. Phytopathology, 2021, 111, 1064-1079.                   | 1.1 | 107       |
| 6  | Fusarium Oxysporum Volatiles Enhance Plant Growth Via Affecting Auxin Transport and Signaling.<br>Frontiers in Microbiology, 2015, 6, 1248.                                                                     | 1.5 | 96        |
| 7  | Variation in secondary metabolite production potential in the Fusarium incarnatum-equiseti species complex revealed by comparative analysis of 13 genomes. BMC Genomics, 2019, 20, 314.                         | 1.2 | 68        |
| 8  | No to <i>Neocosmospora</i> : Phylogenomic and Practical Reasons for Continued Inclusion of the<br>Fusarium solani Species Complex in the Genus <i>Fusarium</i> . MSphere, 2020, 5, .                            | 1.3 | 61        |
| 9  | Population Structure of and Mycotoxin Production by Fusarium graminearum from Maize in South<br>Korea. Applied and Environmental Microbiology, 2012, 78, 2161-2167.                                             | 1.4 | 58        |
| 10 | Polymorphism of trichothecene biosynthesis genes in deoxynivalenol-and nivalenol-producing<br>Fusarium graminearum isolates. Mycological Research, 2003, 107, 190-197.                                          | 2.5 | 54        |
| 11 | Expression of the Cameleon calcium biosensor in fungi reveals distinct Ca2+ signatures associated with polarized growth, development, and pathogenesis. Fungal Genetics and Biology, 2012, 49, 589-601.         | 0.9 | 48        |
| 12 | DNA Sequence-Based Identification of <i>Fusarium</i> : A Work in Progress. Plant Disease, 2022, 106, 1597-1609.                                                                                                 | 0.7 | 48        |
| 13 | Loss of cAMP-Dependent Protein Kinase A Affects Multiple Traits Important for Root Pathogenesis by<br><i>Fusarium oxysporum</i> . Molecular Plant-Microbe Interactions, 2011, 24, 719-732.                      | 1.4 | 44        |
| 14 | Population genetic structure and mycotoxin potential of the wheat crown rot and head blight pathogen Fusarium culmorum in Algeria. Fungal Genetics and Biology, 2017, 103, 34-41.                               | 0.9 | 44        |
| 15 | <i>Fusarium</i> mycotoxins: a trans-disciplinary overview. Canadian Journal of Plant Pathology, 2018,<br>40, 161-171.                                                                                           | 0.8 | 37        |
| 16 | Effect of deletion of a trichothecene toxin regulatory gene on the secondary metabolism<br>transcriptome of the saprotrophic fungus Trichoderma arundinaceum. Fungal Genetics and Biology,<br>2018, 119, 29-46. | 0.9 | 27        |
| 17 | <i>Fusarium graminearum</i> arabinanase (Arb93B) Enhances Wheat Head Blight Susceptibility by<br>Suppressing Plant Immunity. Molecular Plant-Microbe Interactions, 2019, 32, 888-898.                           | 1.4 | 27        |
| 18 | FUSARIUM-ID v.3.0: An Updated, Downloadable Resource for <i>Fusarium</i> Species Identification.<br>Plant Disease, 2022, 106, 1610-1616.                                                                        | 0.7 | 27        |

Hye-Seon Kim

| #  | Article                                                                                                                                                                                                           | IF            | CITATIONS     |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------|
| 19 | Roles of three Fusarium graminearum membrane Ca2+ channels in the formation of Ca2+ signatures,<br>growth, development, pathogenicity and mycotoxin production. Fungal Genetics and Biology, 2018, 111,<br>30-46. | 0.9           | 24            |
| 20 | Identification and distribution of gene clusters required for synthesis of sphingolipid metabolism inhibitors in diverse species of the filamentous fungus Fusarium. BMC Genomics, 2020, 21, 510.                 | 1.2           | 21            |
| 21 | Roles of three Fusarium oxysporum calcium ion (Ca2+) channels in generating Ca2+ signatures and controlling growth. Fungal Genetics and Biology, 2015, 82, 145-157.                                               | 0.9           | 19            |
| 22 | <i>Phytophthora</i> Database 2.0: Update and Future Direction. Phytopathology, 2013, 103, 1204-1208.                                                                                                              | 1.1           | 16            |
| 23 | Role of Trichoderma arundinaceum tri10 in regulation of terpene biosynthetic genes and in control of metabolic flux. Fungal Genetics and Biology, 2019, 122, 31-46.                                               | 0.9           | 16            |
| 24 | Heterothallic sexual reproduction in three canker-inducing tree pathogens within the Fusarium torreyae species complex. Mycologia, 2018, 110, 710-725.                                                            | 0.8           | 14            |
| 25 | Fusarium xyrophilum, sp. nov., a member of the Fusarium fujikuroi species complex recovered from pseudoflowers on yellow-eyed grass (Xyris spp.) from Guyana. Mycologia, 2020, 112, 39-51.                        | 0.8           | 14            |
| 26 | A cytochrome P450 monooxygenase gene required for biosynthesis of the trichothecene toxin harzianum A in Trichoderma. Applied Microbiology and Biotechnology, 2019, 103, 8087-8103.                               | 1.7           | 13            |
| 27 | Gain and loss of a transcription factor that regulates late trichothecene biosynthetic pathway genes<br>in Fusarium. Fungal Genetics and Biology, 2020, 136, 103317.                                              | 0.9           | 13            |
| 28 | Harnessing Chemical Ecology for Environment-Friendly Crop Protection. Phytopathology, 2021, 111, 1697-1710.                                                                                                       | 1.1           | 11            |
| 29 | Distribution, Function, and Evolution of a Gene Essential for Trichothecene Toxin Biosynthesis in Trichoderma. Frontiers in Microbiology, 2021, 12, 791641.                                                       | 1.5           | 10            |
| 30 | Enhanced Resistance to <i>Fusarium graminearum</i> in Transgenic Arabidopsis Plants Expressing a<br>Modified Plant Thionin. Phytopathology, 2020, 110, 1056-1066.                                                 | 1.1           | 9             |
| 31 | Design and validation of a robust multiplex polymerase chain reaction assay for <i>MAT</i> idiomorph within the <i>Fusarium fujikuroi</i> species complex. Mycologia, 2019, 111, 772-781.                         | 0.8           | 7             |
| 32 | An endophyte of Macrochloa tenacissima (esparto or needle grass) from Tunisia is a novel species in<br>the Fusarium redolens species complex. Mycologia, 2020, 112, 792-807.                                      | 0.8           | 7             |
| 33 | <i>Fusarium abutilonis</i> and <i>F. guadeloupense</i> , two novel species in the <i>Fusarium<br/>buharicum</i> clade supported by multilocus molecular phylogenetic analyses. Mycologia, 2022, 114,<br>682-696.  | 0.8           | 4             |
| 34 | Atomic Force Microscopy: A Tool for Studying Biophysical Surface Properties Underpinning Fungal<br>Interactions with Plants and Substrates. Methods in Molecular Biology, 2012, 835, 151-164.                     | 0.4           | 3             |
| 35 | Genus-wide analysis of Fusarium polyketide synthases reveals broad chemical potential. Fungal<br>Genetics and Biology, 2022, 160, 103696.                                                                         | 0.9           | 3             |
| 36 | Maternal mitochondrial inheritance in two <i>Fusarium</i> pathogens of prickly ash ( <i>Zanthoxylum) Tj ETQq</i>                                                                                                  | 0 0 0 rgBT /( | Overlock 10 T |

3

| #  | Article                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Evaluation of multi-color genetically encoded Ca2+ indicators in filamentous fungi. Fungal Genetics and Biology, 2021, 149, 103540.                         | 0.9 | 2         |
| 38 | Time-Lapse Imaging of Root Pathogenesis and Fungal Proliferation Without Physically Disrupting<br>Roots. Methods in Molecular Biology, 2022, 2391, 153-170. | 0.4 | 0         |