Beate Koksch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7059674/publications.pdf

Version: 2024-02-01

95 4,632 32 papers citations h-index

101 101 101 5666
all docs docs citations times ranked citing authors

66

g-index

#	Article	IF	CITATIONS
1	Multivalency as a Chemical Organization and Action Principle. Angewandte Chemie - International Edition, 2012, 51, 10472-10498.	13.8	854
2	Fluorinated amino acids: compatibility with native protein structures and effects on protein–protein interactions. Chemical Society Reviews, 2012, 41, 2135-2171.	38.1	365
3	Synthetic strategies to α-trifluoromethyl and α-difluoromethyl substituted α-amino acids. Chemical Society Reviews, 2008, 37, 1727.	38.1	247
4	Approaches to Obtaining Fluorinated î±-Amino Acids. Chemical Reviews, 2019, 119, 10718-10801.	47.7	192
5	Development of Zinc Finger Domains for Recognition of the 5′-CNN-3′ Family DNA Sequences and Their Use in the Construction of Artificial Transcription Factors. Journal of Biological Chemistry, 2005, 280, 35588-35597.	3.4	166
6	Biocatalysis with Unnatural Amino Acids: Enzymology Meets Xenobiology. Angewandte Chemie - International Edition, 2017, 56, 9680-9703.	13.8	164
7	Fluorine in Peptide Design and Protein Engineering. European Journal of Organic Chemistry, 2005, 2005, 4483-4503.	2.4	151
8	Fluorine in a Native Protein Environment—How the Spatial Demand and Polarity of Fluoroalkyl Groups Affect Protein Folding. Angewandte Chemie - International Edition, 2006, 45, 4198-4203.	13.8	134
9	Deciphering the Fluorine Code—The Many Hats Fluorine Wears in a Protein Environment. Accounts of Chemical Research, 2017, 50, 2093-2103.	15.6	125
10	Nanoscale imaging reveals laterally expanding antimicrobial pores in lipid bilayers. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8918-8923.	7.1	112
11	Random Coils, \hat{l}^2 -Sheet Ribbons, and \hat{l}_{\pm} -Helical Fibers: \hat{A} One Peptide Adopting Three Different Secondary Structures at Will. Journal of the American Chemical Society, 2006, 128, 2196-2197.	13.7	109
12	Direct One-Step ¹⁸ F-Labeling of Peptides via Nucleophilic Aromatic Substitution. Bioconjugate Chemistry, 2009, 20, 2254-2261.	3.6	87
13	Cationic membraneâ€active peptides – anticancer and antifungal activity as well as penetration into human skin. Experimental Dermatology, 2014, 23, 326-331.	2.9	78
14	Proteolytically stable peptides by incorporation of \hat{l} ±-Tfm amino acids. Journal of Peptide Science, 1997, 3, 157-167.	1.4	76
15	Fluorinated amino acids in amyloid formation: a symphony of size, hydrophobicity and α-helix propensity. Chemical Science, 2014, 5, 819-830.	7.4	67
16	Chemical Labeling Strategy with (<i>R</i>)- and (<i>S</i>)-Trifluoromethylalanine for Solid State ¹⁹ F NMR Analysis of Peptaibols in Membranes. Journal of the American Chemical Society, 2009, 131, 15596-15597.	13.7	65
17	Amide-I and -II Vibrations of the Cyclic \hat{I}^2 -Sheet Model Peptide Gramicidin S in the Gas Phase. Journal of the American Chemical Society, 2010, 132, 2085-2093.	13.7	62
18	Nanoparticleâ€Induced Folding and Fibril Formation of Coiledâ€Coilâ€Based Model Peptides. Small, 2010, 6, 1321-1328.	10.0	59

#	Article	IF	Citations
19	Fineâ€Tuning the Proteolytic Stability of Peptides with Fluorinated Amino Acids. European Journal of Organic Chemistry, 2018, 2018, 3667-3679.	2.4	58
20	Evaluation of the Molecular Interactions of Fluorinated Amino Acids with Native Polypeptides. ChemBioChem, 2004, 5, 717-720.	2.6	54
21	Conjugate hydrotrifluoromethylation of $\hat{l}\pm,\hat{l}^2$ -unsaturated acyl-oxazolidinones: synthesis of chiral fluorinated amino acids. Organic and Biomolecular Chemistry, 2012, 10, 8583.	2.8	54
22	How Metal Ions Affect Amyloid Formation: Cu ²⁺ ―and Zn ²⁺ â€5ensitive Peptides. ChemBioChem, 2008, 9, 531-536.	2.6	53
23	Self-Assembling Peptides as Extracellular Matrix Mimics to Influence Stem Cell's Fate. Frontiers in Chemistry, 2019, 7, 172.	3.6	52
24	Following polypeptide folding and assembly with conformational switches. Current Opinion in Chemical Biology, 2008, 12, 730-739.	6.1	51
25	How Cα-Fluoroalkyl Amino Acids and Peptides Interact with Enzymes:Studies Concerning the Influence on Proteolytic Stability, Enzymatic Resolution and Peptide Coupling. Current Topics in Medicinal Chemistry, 2006, 6, 1483-1498.	2.1	50
26	NFGAIL Amyloid Oligomers: The Onset of Beta-Sheet Formation and the Mechanism for Fibril Formation. Journal of the American Chemical Society, 2018, 140, 244-249.	13.7	47
27	Positionâ€Dependent Effects of Fluorinated Amino Acids on the Hydrophobic Core Formation of a Heterodimeric Coiled Coil. Chemistry - A European Journal, 2009, 15, 7628-7636.	3.3	44
28	Catalytically Active Peptide–Gold Nanoparticle Conjugates: Prospecting for Artificial Enzymes. Angewandte Chemie - International Edition, 2020, 59, 8776-8785.	13.8	43
29	From α-helix to β-sheet – a reversible metal ion induced peptide secondary structure switch. Organic and Biomolecular Chemistry, 2005, 3, 2500.	2.8	42
30	The Multiple Origins of the Hydrophobicity of Fluorinated Apolar Amino Acids. CheM, 2017, 3, 881-897.	11.7	39
31	Fluorine in Protein Environments: A QM and MD Study. Journal of Physical Chemistry B, 2009, 113, 16400-16408.	2.6	37
32	Impact of fluorination on proteolytic stability of peptides: a case study with \hat{l}_{\pm} -chymotrypsin and pepsin. Amino Acids, 2014, 46, 2733-2744.	2.7	36
33	Breast cancer: insights in disease and influence of drug methotrexate. RSC Medicinal Chemistry, 2020, 11, 646-664.	3.9	33
34	Fluorine teams up with water to restore inhibitor activity to mutant BPTI. Chemical Science, 2015, 6, 5246-5254.	7.4	32
35	Intramolecular Charge Interactions as a Tool to Control the Coiledâ€Coilâ€ŧoâ€Amyloid Transformation. Chemistry - A European Journal, 2008, 14, 11442-11451.	3.3	31
36	A Self-Assembling Peptide Scaffold for the Multivalent Presentation of Antigens. Biomacromolecules, 2015, 16, 2188-2197.	5.4	31

#	Article	IF	CITATIONS
37	Flow Synthesis of Fluorinated αâ€Amino Acids. European Journal of Organic Chemistry, 2015, 2015, 3036-3039.	2.4	31
38	Catalytic Activity of Peptide–Nanoparticle Conjugates Regulated by a Conformational Change. Biomacromolecules, 2017, 18, 3557-3562.	5.4	31
39	An Intrinsic Hydrophobicity Scale for Amino Acids and Its Application to Fluorinated Compounds. Angewandte Chemie - International Edition, 2019, 58, 8216-8220.	13.8	30
40	Multiomics Analysis Provides Insight into the Laboratory Evolution of <i>Escherichia coli</i> the Metabolic Usage of Fluorinated Indoles. ACS Central Science, 2021, 7, 81-92.	11.3	27
41	Towards identifying preferred interaction partners of fluorinated amino acids within the hydrophobic environment of a dimeric coiled coil peptide. Organic and Biomolecular Chemistry, 2010, 8, 1382.	2.8	26
42	Discovery and Investigation of Natural Editing Function against Artificial Amino Acids in Protein Translation. ACS Central Science, 2017, 3, 73-80.	11.3	25
43	Advanced approaches for the characterization of a de novo designed antiparallel coiled coil peptide. Organic and Biomolecular Chemistry, 2005, 3, 1189.	2.8	24
44	Accommodating fluorinated amino acids in a helical peptide environment. RSC Advances, 2013, 3, 6319.	3.6	22
45	Impact of fluorination on proteolytic stability of peptides in human blood plasma. Bioorganic and Medicinal Chemistry, 2013, 21, 3542-3546.	3.0	22
46	Inhibition of Amyloid Aggregation by Formation of Helical Assemblies. Chemistry - A European Journal, 2011, 17, 10651-10661.	3.3	21
47	Tailored Presentation of Carbohydrates on a Coiled Coil-Based Scaffold for Asialoglycoprotein Receptor Targeting. ACS Chemical Biology, 2015, 10, 2065-2072.	3.4	21
48	Effects of single substitutions with hexafluoroleucine and trifluorovaline on the hydrophobic core formation of a heterodimeric coiled coil. Journal of Fluorine Chemistry, 2015, 175, 32-35.	1.7	21
49	Effects of Fluorination on the Folding Kinetics of a Heterodimeric Coiled Coil. ChemBioChem, 2009, 10, 2867-2870.	2.6	20
50	Structure Analysis of an Amyloid-Forming Model Peptide by a Systematic Glycine and Proline Scan. Biomacromolecules, 2011, 12, 2988-2996.	5.4	20
51	Position-dependent impact of hexafluoroleucine and trifluoroisoleucine on protease digestion. Beilstein Journal of Organic Chemistry, 2017, 13, 2869-2882.	2.2	20
52	Coassembly Generates Peptide Hydrogel with Wound Dressing Material Properties. ACS Omega, 2020, 5, 8557-8563.	3.5	20
53	A Sustainable, Semiâ€Continuous Flow Synthesis of Hydantoins. Chemistry - A European Journal, 2016, 22, 13451-13454.	3.3	19
54	Specific in situ discrimination of amyloid fibrilsversus \hat{l}_{\pm} -helical fibres by the fluorophore NIAD-4. Molecular BioSystems, 2012, 8, 557-564.	2.9	17

#	Article	IF	CITATIONS
55	Synthesis of enantiomerically pure $(2 < i > S < i>, 3 < i> S < i>)-5,5,5-trifluoroisoleucine and (2 < i > R < i>, 3 < i> S < i>)-5,5,5-trifluoro- < i> allo < i> isoleucine. Beilstein Journal of Organic Chemistry, 2013, 9, 2009-2014.$	2.2	17
56	Peptideâ€Gold Nanoparticle Conjugates as Sequential Cascade Catalysts. ChemCatChem, 2018, 10, 4324-4328.	3.7	17
57	Synthesis and Incorporation of $\hat{l}\pm$ -Trifluoromethyl-Substituted Amino Acids into Peptides. ACS Symposium Series, 1996, , 42-58.	0.5	16
58	<scp>S</scp> ubstrate specificity of an actively assembling amyloid catalyst. Biopolymers, 2017, 108, e23003.	2.4	16
59	Compatibility of the conformationally rigid CF3-Bpg side chain with the hydrophobic coiled-coil interface. Amino Acids, 2010, 39, 1589-1593.	2.7	15
60	Multiple glycosylation of de novo designed \hat{l}_{\pm} -helical coiled coil peptides. Bioorganic and Medicinal Chemistry, 2010, 18, 3703-3706.	3.0	13
61	Exploiting Oligo(amido amine) Backbones for the Multivalent Presentation of Coiled-Coil Peptides. Biomacromolecules, 2015, 16, 2394-2402.	5.4	13
62	Short selfâ€assembling cationic antimicrobial peptide mimetics based on a 3,5â€diaminobenzoic acid scaffold. Peptide Science, 2020, 112, e24130.	1.8	13
63	The Impact of Halogenated Phenylalanine Derivatives on NFGAIL Amyloid Formation. ChemBioChem, 2020, 21, 3544-3554.	2.6	13
64	pH-induced insertion of pHLIP into a lipid bilayer: In-situ SEIRAS characterization of a folding intermediate at neutral pH. Biochimica Et Biophysica Acta - Biomembranes, 2022, 1864, 183873.	2.6	13
65	A systematic study of fundamentals in \hat{l} ±-helical coiled coil mimicry by alternating sequences of \hat{l}^2 - and \hat{l}^3 -amino acids. Amino Acids, 2011, 41, 733-742.	2.7	12
66	Peptide–Gold Nanoparticle Conjugates as Artificial Carbonic Anhydrase Mimics. Catalysts, 2019, 9, 903.	3.5	12
67	Tuning the Catalytic Activity and Substrate Specificity of Peptideâ€Nanoparticle Conjugates. ChemCatChem, 2018, 10, 5665-5668.	3.7	11
68	Mechanism of discrimination of isoleucylâ€ŧRNA synthetase against nonproteinogenic αâ€aminobutyrate and its fluorinated analogues. FEBS Journal, 2020, 287, 800-813.	4.7	10
69	Functionalized peptide hydrogels as tunable extracellular matrix mimics for biological applications. Peptide Science, 2021, 113, e24201.	1.8	10
70	Rational Design of Amphiphilic Fluorinated Peptides: Evaluation of Self-Assembly Properties and Hydrogel Formation. Nanoscale, 0, , .	5.6	9
71	\hat{l}^2 - and \hat{l}^3 -Amino Acids at \hat{l} ±-Helical Interfaces: Toward the Formation of Highly Stable Foldameric Coiled Coils. ACS Medicinal Chemistry Letters, 2014, 5, 1300-1303.	2.8	8
72	Impact of multivalent charge presentation on peptide–nanoparticle aggregation. Beilstein Journal of Organic Chemistry, 2015, 11, 792-803.	2.2	8

#	Article	IF	CITATIONS
73	Improved enantioselective gram scale synthesis route to N-Fmoc-protected monofluoroethylglycine. Journal of Fluorine Chemistry, 2020, 232, 109453.	1.7	8
74	Fluorine-induced polarity increases inhibitory activity of BPTI towards chymotrypsin. RSC Chemical Biology, 2022, 3, 773-782.	4.1	8
75	Hexafluoroacetone as a Protecting and Activating Reagent: Synthesis of New Types of Fluoro-Substituted α-Amino, α-Hydroxy and α-Mercapto Acids. Synthesis, 2004, 2004, 1821-1829.	2.3	6
76	The protofilament architecture of a de novo designed coiled coil-based amyloidogenic peptide. Journal of Structural Biology, 2018, 203, 263-272.	2.8	6
77	Enhancing Antimicrobial Peptide Potency through Multivalent Presentation on Coiled-Coil Nanofibrils. ACS Medicinal Chemistry Letters, 2021, 12, 67-73.	2.8	5
78	Systematic Evaluation of Fluorination as Modification for Peptideâ€Based Fusion Inhibitors against HIVâ€1 Infection. ChemBioChem, 2021, 22, 3443-3451.	2.6	4
79	An Approach for Simultaneous Synthesis of cis- and trans-3-Substituted Proline-Glutamic Acid Chimeras. Synthesis, 2012, 44, 3063-3070.	2.3	3
80	Coreâ€multishell nanotransporters enhance skin penetration of the cellâ€penetrating peptide low molecular weight protamine. Polymers for Advanced Technologies, 2014, 25, 1337-1341.	3.2	3
81	Global substitution of hemeproteins with noncanonical amino acids in Escherichia coli with intact cofactor maturation machinery. Enzyme and Microbial Technology, 2017, 106, 55-59.	3.2	3
82	Exploring the locking stage of NFGAILS amyloid fibrillation via transition manifold analysis. European Physical Journal B, 2021, 94, 1.	1.5	3
83	Proline-glutamate chimera's side chain conformation directs the type of β-hairpin structure. Amino Acids, 2014, 46, 177-186.	2.7	2
84	Coiled-Coils in Phage Display Screening: Insight into Exceptional Selectivity Provided by Molecular Dynamics. Journal of Chemical Information and Modeling, 2015, 55, 495-500.	5.4	2
85	Concluding the Amyloid Formation Pathway of a Coiledâ€Coilâ€Based Peptide from the Size of the Critical Nucleus. ChemPhysChem, 2015, 16, 108-114.	2.1	2
86	Eine intrinsische Hydrophobieskala f $\tilde{A}^{1/4}$ r Aminos \tilde{A} eren und ihre Anwendung auf fluorierte Verbindungen. Angewandte Chemie, 2019, 131, 8300-8304.	2.0	2
87	Investigations from the Belly of the Beast: N-Terminally Labeled Incretin Peptides That Are Both Potent Receptor Agonists and Stable to Protease Digestion. ACS Central Science, 2021, 7, 400-402.	11.3	2
88	Application of Artificial Model Systems to Study the Interactions of Fluorinated Amino Acids within the Native Environment of Coiled Coil Proteins., 0,, 389-409.		1
89	Inhibition of peptide aggregation by means of enzymatic phosphorylation. Beilstein Journal of Organic Chemistry, 2016, 12, 2462-2470.	2.2	1
90	Editorial overview: Synthetic biomolecules: Biopolymers. Current Opinion in Chemical Biology, 2017, 40, A4-A5.	6.1	1

#	Article	IF	CITATIONS
91	Catalytically Active Peptide–Gold Nanoparticle Conjugates: Prospecting for Artificial Enzymes. Angewandte Chemie, 2020, 132, 8858-8867.	2.0	1
92	Balancing selectivity vs stability using molecular dynamics and umbrella sampling. Journal of Cheminformatics, 2014, 6, O22.	6.1	0
93	Klaus Burger. Journal of Fluorine Chemistry, 2016, 191, 42-43.	1.7	O
94	Peptide Engineering Meeting 8. Peptide Science, 2020, 112, e24146.	1.8	0
95	Fluorinated Protease Substrates Show Position-Dependent Degradation. , 2020, , 519-559.		0