Patrick L Sinn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7059630/publications.pdf

Version: 2024-02-01

68 papers 3,808 citations

30 h-index 59 g-index

71 all docs

71 docs citations

times ranked

71

4250 citing authors

#	Article	IF	CITATIONS
1	Increased CFTR expression and function from an optimized lentiviral vector for cystic fibrosis gene therapy. Molecular Therapy - Methods and Clinical Development, 2021, 21, 94-106.	4.1	8
2	Measles virus exits human airway epithelia within dislodged metabolically active infectious centers. PLoS Pathogens, 2021, 17, e1009458.	4.7	18
3	Functional correction of (i) CFTR (i) mutations in human airway epithelial cells using adenine base editors. Nucleic Acids Research, 2021, 49, 10558-10572.	14.5	25
4	Lentiviral vectors transduce lung stem cells without disrupting plasticity. Molecular Therapy - Nucleic Acids, 2021, 25, 293-301.	5.1	4
5	Gene Therapy Potential for Genetic Disorders of Surfactant Dysfunction. Frontiers in Genome Editing, 2021, 3, 785829.	5.2	13
6	Adeno-Associated Virus-Based Gene Therapy for Lifelong Correction of Genetic Disease. Human Gene Therapy, 2020, 31, 985-995.	2.7	17
7	Intratracheal aerosolization of viral vectors to newborn pig airways. BioTechniques, 2020, 68, 235-239.	1.8	2
8	Extracellular Vesicle-Mediated siRNA Delivery, Protein Delivery, and CFTR Complementation in Well-Differentiated Human Airway Epithelial Cells. Genes, 2020, 11, 351.	2.4	9
9	Enhanced Tropism of Species B1 Adenoviral-Based Vectors for Primary Human Airway Epithelial Cells. Molecular Therapy - Methods and Clinical Development, 2019, 14, 228-236.	4.1	8
10	A Novel AAV-mediated Gene Delivery System Corrects CFTR Function in Pigs. American Journal of Respiratory Cell and Molecular Biology, 2019, 61, 747-754.	2.9	31
11	Measles Virus Ribonucleoprotein Complexes Rapidly Spread across Well-Differentiated Primary Human Airway Epithelial Cells along F-Actin Rings. MBio, 2019, 10, .	4.1	21
12	Cystic Fibrosis Gene Therapy: Looking Back, Looking Forward. Genes, 2018, 9, 538.	2.4	87
13	Widespread airway distribution and short-term phenotypic correction of cystic fibrosis pigs following aerosol delivery of piggyBac/adenovirus. Nucleic Acids Research, 2018, 46, 9591-9600.	14.5	38
14	Long-term correction of hemophilia A mice following lentiviral mediated delivery of an optimized canine factor VIII gene. Gene Therapy, 2017, 24, 742-748.	4.5	16
15	Novel GP64 envelope variants for improved delivery to human airway epithelial cells. Gene Therapy, 2017, 24, 674-679.	4.5	23
16	Lentiviral Vectors Pseudotyped with Filoviral Glycoproteins. Methods in Molecular Biology, 2017, 1628, 65-78.	0.9	14
17	CFTR gene transfer with AAV improves early cystic fibrosis pig phenotypes. JCI Insight, 2016, 1, e88728.	5.0	72
18	438. Human, Pig and Mouse IFITMs Partially Restrict Pseudotyped Lentiviral Vectors. Molecular Therapy, 2016, 24, S173-S174.	8.2	0

#	Article	IF	CITATIONS
19	Cell-to-Cell Contact and Nectin-4 Govern Spread of Measles Virus from Primary Human Myeloid Cells to Primary Human Airway Epithelial Cells. Journal of Virology, 2016, 90, 6808-6817.	3.4	43
20	Human, Pig, and Mouse Interferon-Induced Transmembrane Proteins Partially Restrict Pseudotyped Lentiviral Vectors. Human Gene Therapy, 2016, 27, 354-362.	2.7	11
21	Lentiviral-mediated phenotypic correction of cystic fibrosis pigs. JCI Insight, 2016, 1, .	5.0	73
22	7. Lentiviral Vector-Mediated CFTR Gene Transfer to CF Pig Airways Corrects the Anion Transport Defect In Vivo. Molecular Therapy, 2015, 23, S3.	8.2	0
23	Interferon-Î ³ Inhibits Ebola Virus Infection. PLoS Pathogens, 2015, 11, e1005263.	4.7	71
24	Integrating Viral and Nonviral Vectors for Cystic Fibrosis Gene Therapy in the Airways., 2015,,.		2
25	The Nectin-4/Afadin Protein Complex and Intercellular Membrane Pores Contribute to Rapid Spread of Measles Virus in Primary Human Airway Epithelia. Journal of Virology, 2015, 89, 7089-7096.	3.4	45
26	Connections matter â^ how viruses use cell–cell adhesion components. Journal of Cell Science, 2015, 128, 431-439.	2.0	92
27	Hybrid Nonviral/Viral Vector Systems for Improved piggyBac DNA Transposon In Vivo Delivery. Molecular Therapy, 2015, 23, 667-674.	8.2	39
28	Ferret and Pig Models of Cystic Fibrosis: Prospects and Promise for Gene Therapy. Human Gene Therapy Clinical Development, 2015, 26, 38-49.	3.1	57
29	piggyBac-mediated phenotypic correction of factor VIII deficiency. Molecular Therapy - Methods and Clinical Development, 2014, 1, 14042.	4.1	10
30	Ferret and Pig Models of Cystic Fibrosis: Prospects and Promise for Gene Therapy. Human Gene Therapy Clinical Development, 2014, , 150127063140004.	3.1	0
31	Different Roles of the Three Loops Forming the Adhesive Interface of Nectin-4 in Measles Virus Binding and Cell Entry, Nectin-4 Homodimerization, and Heterodimerization with Nectin-1. Journal of Virology, 2014, 88, 14161-14171.	3.4	17
32	<i>piggyBac</i> transposase tools for genome engineering. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2279-87.	7.1	186
33	Intrapulmonary Versus Nasal Transduction of Murine Airways With GP64-pseudotyped Viral Vectors. Molecular Therapy - Nucleic Acids, 2013, 2, e69.	5.1	9
34	Integrin $\hat{l}\pm6\hat{l}^24$ Identifies Human Distal Lung Epithelial Progenitor Cells with Potential as a Cell-Based Therapy for Cystic Fibrosis Lung Disease. PLoS ONE, 2013, 8, e83624.	2.5	22
35	Piggybac Mediated Gene Transfer To Correct Hemophilia A. Blood, 2013, 122, 2900-2900.	1.4	0
36	Lentiviral Vector Gene Transfer to Porcine Airways. Molecular Therapy - Nucleic Acids, 2012, 1, e56.	5.1	44

#	Article	IF	CITATIONS
37	Transcriptional Targeting in the Airway Using Novel Gene Regulatory Elements. American Journal of Respiratory Cell and Molecular Biology, 2012, 47, 227-233.	2.9	6
38	Advances in Cell and Gene-based Therapies for Cystic Fibrosis Lung Disease. Molecular Therapy, 2012, 20, 1108-1115.	8.2	36
39	Adherens junction protein nectin-4 is the epithelial receptor for measles virus. Nature, 2011, 480, 530-533.	27.8	504
40	Tyrosine kinase receptor Axl enhances entry of Zaire ebolavirus without direct interactions with the viral glycoprotein. Virology, 2011, 415, 83-94.	2.4	105
41	T-cell immunoglobulin and mucin domain 1 (TIM-1) is a receptor for <i>Zaire Ebolavirus</i> and <i>Lake Victoria Marburgvirus</i> Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8426-8431.	7.1	330
42	Genetic therapies for cystic fibrosis lung disease. Human Molecular Genetics, 2011, 20, R79-R86.	2.9	25
43	The use of carboxymethylcellulose gel to increase non-viral gene transfer in mouse airways. Biomaterials, 2010, 31, 2665-2672.	11.4	27
44	Rho GTPases Modulate Entry of Ebola Virus and Vesicular Stomatitis Virus Pseudotyped Vectors. Journal of Virology, 2009, 83, 10176-10186.	3.4	79
45	Progress and Prospects: prospects of repeated pulmonary administration of viral vectors. Gene Therapy, 2009, 16, 1059-1065.	4.5	28
46	In vivo imaging of gene transfer to the respiratory tract. Biomaterials, 2008, 29, 1533-1540.	11.4	13
47	Lentivirus Vector Can Be Readministered to Nasal Epithelia without Blocking Immune Responses. Journal of Virology, 2008, 82, 10684-10692.	3.4	86
48	Measles virus blind to its epithelial cell receptor remains virulent in rhesus monkeys but cannot cross the airway epithelium and is not shed. Journal of Clinical Investigation, 2008, 118, 2448-58.	8.2	200
49	Enhanced Gene Expression Conferred by Stepwise Modification of a Nonprimate Lentiviral Vector. Human Gene Therapy, 2007, 18, 1244-1252.	2.7	27
50	In vivo mouse studies with bioluminescence tomography. Optics Express, 2006, 14, 7801.	3.4	167
51	988. Repeat Administration of Lentiviral Vector to Mouse Nasal Epithelia. Molecular Therapy, 2006, 13, S380.	8.2	0
52	Viscoelastic Gel Formulations Enhance Airway Epithelial Gene Transfer with Viral Vectors. American Journal of Respiratory Cell and Molecular Biology, 2005, 32, 404-410.	2.9	47
53	Inclusion of jaagsiekte sheep retrovirus proviral elements markedly increases lentivirus vector pseudotyping efficiency. Molecular Therapy, 2005, 11, 460-469.	8.2	12
54	Persistent Gene Expression in Mouse Nasal Epithelia following Feline Immunodeficiency Virus-Based Vector Gene Transfer. Journal of Virology, 2005, 79, 12818-12827.	3.4	98

#	Article	IF	Citations
55	Gene Transfer to Respiratory Epithelia with Lentivirus Pseudotyped with Jaagsiekte Sheep Retrovirus Envelope Glycoprotein. Human Gene Therapy, 2005, 16, 479-488.	2.7	36
56	Gene Therapy Progress and Prospects: Development of improved lentiviral and retroviral vectors – design, biosafety, and production. Gene Therapy, 2005, 12, 1089-1098.	4.5	299
57	In vivo tomographic imaging based on bioluminescence. , 2004, , .		1
58	Lentivirus Vectors Pseudotyped with Filoviral Envelope Glycoproteins Transduce Airway Epithelia from the Apical Surface Independently of Folate Receptor Alpha. Journal of Virology, 2003, 77, 5902-5910.	3.4	121
59	Cells of Respiratory Epithelium. , 2003, 229, 287-298.		O
60	In Vivo Gene Transfer Using a Nonprimate Lentiviral Vector Pseudotyped with Ross River Virus Glycoproteins. Journal of Virology, 2002, 76, 9378-9388.	3.4	133
61	Measles Virus Preferentially Transduces the Basolateral Surface of Well-Differentiated Human Airway Epithelia. Journal of Virology, 2002, 76, 2403-2409.	3.4	75
62	[28] Gene transfer to airway epithelia using feline immunodeficiency virus-based lentivirus vectors. Methods in Enzymology, 2002, 346, 500-514.	1.0	3
63	Identification of three human renin mRNA isoforms from alternative tissue-specific transcriptional initiation. Physiological Genomics, 2000, 3, 25-31.	2.3	100
64	Transgenic models as tools for studying the regulation of human renin expression. Regulatory Peptides, 2000, 86, 77-82.	1.9	12
65	Highly Regulated Cell Type-restricted Expression of Human Renin in Mice Containing 140- or 160-Kilobase Pair P1 Phage Artificial Chromosome Transgenes. Journal of Biological Chemistry, 1999, 274, 35785-35793.	3.4	52
66	JG cell expression and partial regulation of a human renin genomic transgene driven by a minimal renin promoter. American Journal of Physiology - Renal Physiology, 1999, 277, F634-F642.	2.7	16
67	Human Renin mRNA Stability Is Increased in Response to cAMP in Calu-6 Cells. Hypertension, 1999, 33, 900-905.	2.7	38
68	Cells of Respiratory Epithelium. , 0, , 285-298.		0