Joel E Cohen

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/7059484/publications.pdf
Version: 2024-02-01

2 Cauchy, normal and correlations versus heavy tails. Statistics and Probability Letters, 2022, 186, 109489.

Bilateral international migration flow estimates updated and refined by sex. Scientific Data, 2022, 9, 173.

Temporal and Spatial Taylor's Law: Application to Japanese Subnational Mortality Rates. Journal of the Royal Statistical Society Series A: Statistics in Society, 2022, 185, 1979-2006.

Spatial and temporal autocorrelations affect Taylor's law for US county populations: Descriptive and predictive models. PLoS ONE, 2021, 16, e0245062.

Taylorâ $€^{\mathrm{TM}}$ s law of fluctuation scaling for semivariances and higher moments of heavy-tailed data.
Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .

Every variance function, including Taylorâ $€^{T M}$ s power law of fluctuation scaling, can be produced by any
7 location-scale family of distributions with positive mean and variance. Theoretical Ecology, 2020, 13, 1-5.

Nonconcavity of the spectral radius in Levinger's theorem. Linear Algebra and Its Applications, 2020, 606, 201-218.

Species-abundance distributions and Taylorâ $€^{T M}$ s power law of fluctuation scaling. Theoretical Ecology,
2020, 13, 607-614.

Seasonality of Taylorâ $€^{\mathrm{TM}} \mathrm{s}$ law of fluctuation scaling in all-India daily rainfall. Npj Climate and
10 Seasonality of Taylorâ ${ }^{\mathrm{TM}}$ s law on
2.6

1

Heavy-tailed distributions, correlations, kurtosis and Taylorâ $€^{T M}$ s Law of fluctuation scaling.
11 Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 476, 20200610.

Yeast facilitates the multiplication of Drosophila bacterial symbionts but has no effect on the form
12 or parameters of Taylorâ $€^{T M} \mathrm{~s}$ law. PLoS ONE, 2020, 15, e0242692.
1.1

1

13 Title is missing!. , 2020, 15, e0242692.
0

14 Title is missing!. , 2020, 15, e0242692.
o

15 Title is missing!. , 2020, 15, e0242692.
O

How to Measure Population Aging? The Answer Is Less than Obvious: A Review. Gerontology, 2019, 65,

Two Processes Regulating Trophic Energy Flow in Pelagic and Terrestrial Ecosystems: Trophic
22 Efficiency and Body Sizeấ $€$ "Dependent Biomass Production: (A Reply to Giacomini). American Naturalist 2018, 191, 364-367.

Linking parasite populations in hosts to parasite populations in space through Taylor's law and the
negative binomial distribution. Proceedings of the National Academy of Sciences of the United States

3.3

$$
\begin{aligned}
& 29 \text { Taylor's law, via ratios, for some distributions with infinite mean. Journal of Applied Probability, 2017, } \\
& 54,657-669 \text {. }
\end{aligned}
$$

$0.4 \quad 8$

Modeling distances between humans using Taylorâ $€^{\mathrm{TM}}$ s law and geometric probability. Mathematical
0.8

3

Taylorâ $€^{T M}$ s power law and fixed-precision sampling: application to abundance of fish sampled by gillnets
0.7

10
in an African lake. Canadian Journal of Fisheries and Aquatic Sciences, 2017, 74, 87-100.

Chagas disease vector control and Taylor's law. PLoS Neglected Tropical Diseases, 2017, 11, e0006092.
1.3

15

> Body size and hosts of Triatoma infestans populations affect the size of bloodmeal contents and
> female fecundity in rural northwestern Argentina. PLoS Neglected Tropical Diseases, 2017, 11,
> e0006097.
1.3

12

Taylor's law and related allometric power laws in New Zealand mountain beech forests: the roles of
1.2

18 space, time and environment. Oikos, 2016, 125, 1342-1357.

35 More tornadoes in the most extreme U.S. tornado outbreaks. Science, 2016, 354, 1419-1423.
6.0

84

39	Statistics of Primes (and Probably Twin Primes) Satisfy Taylor's Law from Ecology. American Statistician, 2016, 70, 399-404.	0.9	11
40	Sample and population exponents of generalized Taylorấ $€^{\mathrm{TM}}$ s law. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7755-7760.	3.3	64
41	Parasitism alters three power laws of scaling in a metazoan community: Taylorâ $€^{\mathrm{TM}} \mathrm{s}$ law, density-mass allometry, and variance-mass allometry. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1791-1796.	3.3	52
42	Robustness of Taylor's law under spatial hierarchical groupings of forest tree samples. Population Ecology, 2015, 57, 93-103.	0.7	9
43	Mean and variance of population density and temporal Taylorâ $\epsilon^{T M} \mathrm{~S}$ law in stochastic stage-structured density-dependent models of exploited fish populations. Theoretical Ecology, 2015, 8, 175-186.	0.4	4
44	Markov's Inequality and Chebyshev's Inequality for Tail Probabilities: A Sharper Image. American Statistician, 2015, 69, 5-7.	0.9	15
45	Random sampling of skewed distributions implies Taylorâ $€^{\mathrm{TM}}$ s power law of fluctuation scaling. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7749-7754.	3.3	97

Reply to Chen: Under specified assumptions, adequate random samples of skewed distributions obey
46 Taylor's law. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3157-E3158.

47 Taylorâ $€^{\text {TM }}$ s power law and the stability of crop yields. Field Crops Research, 2015, 183, 294-302.
$2.3 \quad 58$

48 Domestic Animal Hosts Strongly Influence Human-Feeding Rates of the Chagas Disease Vector Triatoma
1.3

54
49 Key Source Habitats and Potential Dispersal of Triatoma infestans Populations in Northwestern
Argentina: Implications for Vector Control. PLoS Neglected Tropical Diseases, 2014, 8, e3238.

Taylor's law and abrupt biotic change in a smoothly changing environment. Theoretical Ecology, 2014,
7, 77-86.
0.4

16

Defining Risk Groups to Yellow Fever Vaccine-Associated Viscerotropic Disease in the Absence of
0.6

10
51 Denominator Data. American Journal of Tropical Medicine and Hygiene, 2014, 90, 267-271.

Population age and initial density in a patchy environment affect the occurrence of abrupt transitions
in a birth-and-death model of Taylor's law. Ecological Modelling, 2014, 289, 59-65.
1.2

7

53 Cauchy inequalities for the spectral radius of products of diagonal and nonnegative matrices.
Proceedings of the American Mathematical Society, 2014, 142, 3665-3674.
0.43
$55 \quad \begin{aligned} & \text { Chebyshev and } G r A ̃ 1 / 4 \text { ss inequalities for real rectangular matrices. Linear Algebra and Its Applications, } \\ & 2014,447,133-138 \text {. }\end{aligned}$.

Soil invertebrates, chemistry, weather, human management, and edaphic food webs at 135 sites in The Netherlands: SIZEWEB. Ecology, 2014, 95, 578-578.

Taylorâ $€^{T M}$ s power law of fluctuation scaling and the growth-rate theorem. Theoretical Population
Biology, 2013, 88, 94-100.

Stochastic multiplicative population growth predicts and interprets Taylor's power law of
fluctuation scaling. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20122955.

Generalized minimax and maximin inequalities for order statistics and quantile functions.
$59 \begin{aligned} & \text { Generaiized minimax and maximin inequalities for order statistics and quant } \\ & \text { Proceedings of the American Mathematical Society, 2013, 141, 2515-2517. }\end{aligned}$
$0.4 \quad 1$

Taylor's Law holds in experimental bacterial populations but competition does not influence the slope. Biology Letters, 2012, 8, 316-319.
1.0

33

74 Spatial Re-Establishment Dynamics of Local Populations of Vectors of Chagas Disease. PLoS Neglected79 Colour of environmental noise affects the nonlinear dynamics of cycling, stageấstructuredpopulations. Ecology Letters, 2008, 11, 820-830.
$3.0 \quad 28$
80 Three allometric relations of population density to body mass: theoretical integration and empiricaltests in 149 food webs. Ecology Letters, 2008, 11, 1216-1228.
International migration beyond gravity: A statistical model for use in population projections.81 Proceedings of the National Academy of Sciences of the United States of America, 2008, 105,3.3

Sustainable vector control and management of Chagas disease in the Gran Chaco, Argentina.
Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 16194-16199.
3.3

83 Body sizes in food chains of animal predators and parasites. , 2007, , 306-325.

2

84 CONSUMERâe"RESOURCE BODY-SIZE RELATIONSHIPS IN NATURAL FOOD WEBS. Ecology, 2006, 87, 2411-2417. 1.5

85 The evolution of a great mind: the life and work of Darwin. Lancet, The, 2006, 367, 721-722.
6.3

2

Re-establishment of local populations of vectors of Chagas disease after insecticide spraying. Journal

91	Food Webs, Body Size, and Species Abundance in Ecological Community Description. Advances in Ecological Research, 2005, , 1-84.	1.4	142
92	Estimating Relative Energy Fluxes Using the Food Web, Species Abundance, and Body Size. Advances in Ecological Research, 2005, 36, 137-182.	1.4	35
93	BODY SIZES OF CONSUMERS AND THEIR RESOURCES. Ecology, 2005, 86, 2545-2545.	1.5	105
94	SPECIES' AVERAGE BODY MASS AND NUMERICAL ABUNDANCE IN A COMMUNITY FOOD WEB. , 2005, , 137-156.		8
95	Incidence of trypanosoma cruzi infection among children following domestic reinfestation after insecticide spraying in rural northwestern Argentina. American Journal of Tropical Medicine and Hygiene, 2005, 73, 95-103.	0.6	50
96	Elementary inequalities that involve two nonnegative vectors or functions. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 15018-15022.	3.3	1
97	Mathematics Is Biology's Next Microscope, Only Better; Biology Is Mathematics' Next Physics, Only Better. PLoS Biology, 2004, 2, e 439.	2.6	203
98	Bacterial traits, organism mass, and numerical abundance in the detrital soil food web of Dutch agricultural grasslands. Ecology Letters, 2004, 8, 80-90.	3.0	103
99	Interaction strengths in food webs: issues and opportunities. Journal of Animal Ecology, 2004, 73, 585-598.	1.3	557

100 Trophic linksấ ${ }^{T M}$ length and slope in the Tuesday Lake food web with speciesâ $€^{\text {TM }}$ body mass and numerical abundance. Journal of Animal Ecology, 2004, 73, 852-866.
101 Oviposition habitat selection in response to risk of predation in temporary pools: mode of detection and consistency across experimental venue. Oecologia, 2004, 138, 300-305.
0.9 226
102 Altitude is a phenotypic modifier in hereditary paraganglioma typeï ${ }^{1 / 2} 21$: evidence for an oxygen-sensing1.8176defect. Human Genetics, 2003, 113, 228-237.

$$
3.3
$$

103 Ecological community description using the food web, species abundance, and body size. Proce
of the National Academy of Sciences of the United States of America, 2003, 100, 1781-1786.

$$
478
$$

Human Population: The Next Half Century. Science, 2003, 302, 1172-1175.6.0665
105 Congenital Transmission of <i> Trypanosoma cruzi</i>Infection in Argentina. Emerging Infectious
Diseases, 2003, 9, 29-32.2.0101
107 Global Stability, Local Stability and Permanence in Model Food Webs. Journal of Theoretical Biology,
2001, 212, 223-235.
109 Modeling Household Transmission of American Trypanosomiasis. Science, 2001, 293, 694-698. 216

110 Coastal Hazards and the Global Distribution of Human Population. Environmental Geosciences, 2000,

117	Should Population Projections Consider "Limiting Factors"--and If So, How?. Population and Development Review, 1998, 24, 118.	1.2	7
118	Population, Economics, Environment and Culture: An Introduction to Human Carrying Capacity. Journal of Applied Ecology, 1997, 34, 1325.	1.9	46
119	Why Should More United States Tax Money be Used to Pay for Development Assistance in Poor Countries?. Population and Development Review, 1997, 23, 579.	1.2	0
120	Effects of chickens on the prevalence of infestation and population density of Triatoma infestans in rural houses of northâ€west Argentina. Medical and Veterinary Entomology, 1997, 11, 383-388.	0.7	51
121	Orthogonal cycle transforms of stochastic matrices. Circuits, Systems, and Signal Processing, 1997, 16, 363-374.	1.2	4
122	The role of the peridomiciliary area in the elimination of Triatoma infestans from rural Argentine communities. Revista Panamericana De Salud Publica/Pan American Journal of Public Health, 1997, 1, 273-279.	0.6	84
123	Host-Feeding Patterns of Domiciliary Triatoma infestans (Hemiptera: Reduviidae) in Northwest Argentina: Seasonal and Instar Variation. Journal of Medical Entomology, 1996, 33, 15-26.	0.9	46

127	Game Control.. Population and Development Review, 1996, 22, 578.	1.2	1
128	Red, white and blue: environmental variance spectra and coexistence in metapopulations. Journal of Theoretical Biology, 1995, 176, 301-316.	0.8	72
129	Unexpected dominance of high frequencies in chaotic nonlinear population models. Nature, 1995, 378, 610-612.	13.7	12

$130 \quad$| H<scp>ow</scp> M <scp>any</scp> |
| :--- |
| S<scscp>eople</scp> | C<scp>an the</scp> E<scp>arth</scp>

Nonnegative ranks, decompositions, and factorizations of nonnegative matrices. Linear Algebra and
lts Applications, 1993, 190, 149-168.
Relative entropy under mappings by stochastic matrices. Linear Algebra and Its Applications, 1993, 179,211-235.
137 Giant components in three-parameter random directed graphs. Advances in Applied Probability, 1992, 24, 845-857.
$0.4 \quad 1$
Random arithmetic-geometric means and random pi: observations and conjectures. Stochastic
145 Food web patterns and their consequences. Nature, 1991,350, 669-674. 666

146 Paradoxical behaviour of mechanical and electrical networks. Nature, 1991, 352, 699-701.
13.7

122
Disturbance, interspecific interaction and diversity in metapopulations. Biological Journal of the
Linnean Society, 1991, 42, 193-218.

148 Stability of vertices in random boolean cellular automata. Random Structures and Algorithms, 1991, 2,
149 A Stochastic Theory of Community Food Webs. V. Intervality and Triangulation in the Trophic-Niche
Overlap Graph. American Naturalist, 1990, 135, 435-463.

150 A paradox of congestion in a queuing network. Journal of Applied Probability, 1990, 27, 730-734.
0.4116

151 Population System Control (Jian Song and Jingyuan Yu). SIAM Review, 1990, 32, 494-500.
4.2

4

152 DNA Fingerprinting: What (Really) are the Odds?. Chance, 1990, 3, 26-32.
0.1

Convexity properties of generalizations of the arithmetic-geometric mean. Numerical Functional
Analysis and Optimization, 1990, 11, 33-44.
0.6

1

154 Community Food Webs. Biomathematics, 1990, , .
0.7

> 155 A stochastic theory of community food webs. Vl. Heterogeneous alternatives to the cascade model.
> Theoretical Population Biology, 1990, 37, 55-90.
0.5

34

156 BIG FISH, LITTLE FISH. The Sciences, 1989, 29, 36-43.
$0.1 \quad 2$

157 Just proportions in food webs. Nature, 1989, 341, 104-105.
13.7

13

The World Fertility Survey: An Appraisal of Methodology: Comment. Journal of the American
1.8

0
158 Statistical Association, 1989, 84, 772.

Host-Parasite Relations and Random Zero-Sum Games: The Stabilizing Effect of Strategy
1.0

11
159 Diversification. American Naturalist, 1989, 133, 533-552.

160 Pursuitâ€"Evasion games on graphs. Journal of Graph Theory, 1988, 12, 159-167.
0.5

12

161 Threshold phenomena in random structures. Discrete Applied Mathematics, 1988, 19, 113-128.
163 A special section for correspondence and controversy. Population and Environment, 1988, 10, 59-72.

$164 \quad$| Subadditivity, Generalized Products of Random Matrices and Operations Research. SIAM Review, 1988, |
| :--- |
| $30,69-86$. |

165 Dynamic Basis of Food Web Organization. Ecology, 1988, 69, 1655-1664.
The Sensitivity of Expected Spanning Trees in Anisotropic Random Graphs. North-Holland Mathematics 167 Studies, 1987, 144, 9-16.0.200.5Population Biology, 1986, 29, 385-406.Connectivity of finite anisotropic random graphs and directed graphs. Mathematical Proceedings ofthe Cambridge Philosophical Society, 1986, 99, 315-330.Population forecasts and confidence intervals for sweden: a comparison of model-based and
empirical approaches. Demography, 1986, 23, 105-126.
Approaching consensus can be delicate when positions harden. Stochastic Processes and Their
171 Applications, 1986, 22, 315-322.0.46Perturbation theory of completely mixed matrix games. Linear Algebra and Its Applications, 1986, 79,153-162.

$0.4 \quad 5$
5
5
The game-theoretic value and the spectral radius of a nonnegative matrix. Proceedings of the
173 American Mathematical Society, 1985, 93, 205-205.
174 Maryland Striped Bass: Recruitment Declining below Replacement. Transactions of the American0.628Fisheries Society, 1985, 114, 146-151.
0.41
175
Measuring the uncertainty of population forecasts: a comparison of two approaches. Advances in Applied Probability, 1985, 17, 246-247.0.41

181 Finite Markov processes and their applications. Mathematical Biosciences, 1983, 64, 299-301.
0.9

0

A Stochastic Age-Structured Population Model of Striped Bass (<i>Morone saxatilis</i>) in the
0.7

Potomac River. Canadian Journal of Fisheries and Aquatic Sciences, 1983, 40, 2170-2183.

The asymptotic probability that a random graph is a unit interval graph, indifference graph, or proper
interval graph. Discrete Mathematics, 1982, 40, 21-24.

Eigenvalue inequalities for products of matrix exponentials. Linear Algebra and Its Applications, 1982,
0.4

42
184 45, 55-95.

Sets of nonnegative matrices with positive inhomogeneous products. Linear Algebra and Its
Applications, 1982, 47, 185-192.
$0.4 \quad 12$

186 Some trees are not interval graphs. Bulletin of Mathematical Biology, 1981, 43, 717-717.
0.9

0
187 Shorter Notes: Convexity of the Dominant Eigenvalue of an Essentially Nonnegative Matrix.
Proceedings of the American Mathematical Society, 1981, 81, 657.
$0.4 \quad 27$

188 The size distributions of proteins, mRNA, and nuclear RNA. Journal of Molecular Evolution, 1980, 15, 37-57.
0.8

48
189 Effects of reovirus infection on the spatial and temporal organization of DNA replication in L cells. Chromosoma, 1980, 79, 207-214.
190 Estimating malaria incidence and recovery rates from panel surveys. Mathematical Biosciences, 1980, 49, 273-305.
0.9Malariae *. American Journal of Tropical Medicine and Hygiene, 1980, 29, 725-737.
192 Ergodic theorems in demography. Bulletin of the American Mathematical Society, 1979, 1, 275-295.0.8151
$\begin{array}{ll} & \text { Random evo } \\ \text { 9, 245-251. }\end{array}$0.415Long-run growth rates of discrete multiplicative processes in Markovian environments. Journal ofMathematical Analysis and Applications, 1979, 69, 243-251.
201 Derivatives of the spectral radius as a function of non-negative matrix elements. Mathematical
205 Is a Primate Like a Rose?. PsycCritiques, 1977, 22, 269-270. 0.0 0
206 Ergodicity of Age Structure in Populations with Markovian Vital Rates, I: Countable States. Journal ofthe American Statistical Association, 1976, 71, 335-339.
207 The Distribution of the Chi-Squared Statistic under Clustered Sampling from Contingency Tables.
209 The control of foot formation in transplantation experiments with hydra viridis. Journal ofTheoretical Biology, 1975, 50, 87-105.0.80.816
$210 \quad \begin{aligned} & \text { The size and } \\ & 23,543-550 .\end{aligned}$1.8
$211 \quad \begin{aligned} & \text { Mathemat } \\ & 69,1046 .\end{aligned}$
212 Heterologous Immunity in Human Malaria. Quarterly Review of Biology, 1973, 48, 467-489.0.063213 Selective Host Mortality in a Catalytic Model Applied to Schistosomiasis. American Naturalist, 1973,1.029
107, 199-212.221 Markov's inequality: Sharpness, renewal theory, finite samples, reliability theory. Communications in

