Miriam Muñoz-Rojas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7059416/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Afforestation with Pinus nigra Arn ssp salzmannii along an elevation gradient: controlling factors and implications for climate change adaptation. Trees - Structure and Function, 2022, 36, 93-102.	0.9	6
2	Biocrust cyanobacteria inoculants biomineralize gypsum and preserve indigenous bacterial communities in dryland topsoil. Geoderma, 2022, 406, 115527.	2.3	12
3	High-resolution images and drone-based LiDAR reveal striking patterns of vegetation gaps in a wooded spinifex grassland of Western Australia. Landscape Ecology, 2022, 37, 829-845.	1.9	9
4	Global maps of soil temperature. Global Change Biology, 2022, 28, 3110-3144.	4.2	113
5	Global urban environmental change drives adaptation in white clover. Science, 2022, 375, 1275-1281.	6.0	62
6	Postâ€fire restoration with contourâ€felled log debris increases early recruitment of Spanish black pine (<scp><i>Pinus nigra</i></scp> Arn. ssp. <i>salzmannii</i>) in Mediterranean forests. Restoration Ecology, 2021, 29, e13338.	1.4	8
7	Bridging ecology and physics: Australian fairy circles regenerate following model assumptions on ecohydrological feedbacks. Journal of Ecology, 2021, 109, 399-416.	1.9	16
8	Restoration and rehabilitation of degraded land in arid and <scp>semiarid</scp> environments: Editorial. Land Degradation and Development, 2021, 32, 3-6.	1.8	5
9	Biocrust cyanobacterial composition, diversity, and environmental drivers in two contrasting climatic regions in Brazil. Geoderma, 2021, 386, 114914.	2.3	20
10	Native plant diversity is a stronger driver for soil quality than inorganic amendments in semi-arid post-mining rehabilitation. Geoderma, 2021, 394, 115001.	2.3	5
11	Restoring post-fire ecosystems with biocrusts: Living, photosynthetic soil surfaces. Current Opinion in Environmental Science and Health, 2021, 23, 100273.	2.1	10
12	Changes in ecosystem properties after postâ€fire management strategies in wildfireâ€affected Mediterranean forests. Journal of Applied Ecology, 2021, 58, 836-846.	1.9	28
13	Soil biodiversity and organic carbon are essential to reverse desertification. Ecosistemas, 2021, 30, 2238.	0.2	1
14	Bioâ€priming seeds with cyanobacteria: effects on native plant growth and soil properties. Restoration Ecology, 2020, 28, S168.	1.4	39
15	Editorial: Fire in the environment. Journal of Environmental Management, 2020, 253, 109703.	3.8	5
16	Cyanobacteria as a Nature-Based Biotechnological Tool for Restoring Salt-Affected Soils. Agronomy, 2020, 10, 1321.	1.3	23
17	Strategic Management of Grazing Grassland Systems to Maintain and Increase Organic Carbon in Soils. , 2020, , .		2
18	Plant species and season influence soil physicochemical properties and microbial function in a semi-arid woodland ecosystem. Plant and Soil, 2020, 456, 43-59.	1.8	18

Miriam Muñoz-Rojas

#	Article	IF	CITATIONS
19	Field-Deployed Extruded Seed Pellets Show Promise for Perennial Grass Establishment in Arid Zone Mine Rehabilitation. Frontiers in Ecology and Evolution, 2020, 8, .	1.1	13
20	Assessing the viability of cyanobacteria pellets for application in arid land restoration. Journal of Environmental Management, 2020, 270, 110795.	3.8	28
21	Soil, Site, and Management Factors Affecting Cadmium Concentrations in Cacao-Growing Soils. Agronomy, 2020, 10, 806.	1.3	26
22	Climate change impacts on agricultural suitability and yield reduction in a Mediterranean region. Geoderma, 2020, 374, 114453.	2.3	70
23	Reconditioning Degraded Mine Site Soils With Exogenous Soil Microbes: Plant Fitness and Soil Microbiome Outcomes. Frontiers in Microbiology, 2019, 10, 1617.	1.5	33
24	Water availability drives the effectiveness of inorganic amendments to increase plant growth and substrate quality. Catena, 2019, 182, 104116.	2.2	10
25	Inorganic soil amendments alter seedling performance of native plant species in post-mining arid zone rehabilitation. Journal of Environmental Management, 2019, 241, 179-186.	3.8	12
26	Natural and Regenerated Saltmarshes Exhibit Similar Soil and Belowground Organic Carbon Stocks, Root Production and Soil Respiration. Ecosystems, 2019, 22, 1803-1822.	1.6	25
27	Assessment of Soil Suitability for Improvement of Soil Factors and Agricultural Management. Sustainability, 2019, 11, 1588.	1.6	39
28	A multiâ€scale study of Australian fairy circles using soil excavations and droneâ€based image analysis. Ecosphere, 2019, 10, e02620.	1.0	21
29	To whom the burden of soil degradation and management concerns. Advances in Chemical Pollution, Environmental Management and Protection, 2019, , 1-22.	0.3	4
30	A case study of seed-use technology development for Pilbara mine site rehabilitation. , 2019, , .		13
31	Soil ecosystem services, sustainability, valuation and management. Current Opinion in Environmental Science and Health, 2018, 5, 7-13.	2.1	196
32	The role of organic amendments in drylands restoration. Current Opinion in Environmental Science and Health, 2018, 5, 1-6.	2.1	51
33	Effects of indigenous soil cyanobacteria on seed germination and seedling growth of arid species used in restoration. Plant and Soil, 2018, 429, 91-100.	1.8	56
34	Ecophysiological Indicators to Assess Drought Responses of Arid Zone Native Seedlings in Reconstructed Soils. Land Degradation and Development, 2018, 29, 984-993.	1.8	29
35	Native-plant amendments and topsoil addition enhance soil function in post-mining arid grasslands. Science of the Total Environment, 2018, 621, 744-752.	3.9	42
36	Soil quality indicators: critical tools in ecosystem restoration. Current Opinion in Environmental Science and Health, 2018, 5, 47-52.	2.1	106

#	Article	IF	CITATIONS
37	Cyanobacteria inoculation enhances carbon sequestration in soil substrates used in dryland restoration. Science of the Total Environment, 2018, 636, 1149-1154.	3.9	105
38	The Need For Sustainability In Our Soil. , 2018, , .		0
39	Spatial Gradients of Intensity and Persistence of Soil Water Repellency Under Different Forest Types in Central Mexico. Land Degradation and Development, 2017, 28, 317-327.	1.8	21
40	Climate and land use changes effects on soil organic carbon stocks in a Mediterranean semi-natural area. Science of the Total Environment, 2017, 579, 1249-1259.	3.9	69
41	Climate change impacts on soil organic carbon stocks of Mediterranean agricultural areas: A case study in Northern Egypt. Agriculture, Ecosystems and Environment, 2017, 238, 142-152.	2.5	66
42	Soil Mapping and Processes Modeling for Sustainable Land Management. , 2017, , 29-60.		21
43	Modeling Agricultural Suitability Along Soil Transects Under Current Conditions and Improved Scenario of Soil Factors. , 2017, , 193-219.		16
44	Benefits of adopting seed-based technologies for rehabilitation in the mining sector: a Pilbara perspective. Australian Journal of Botany, 2017, 65, 646.	0.3	77
45	Soil Mapping and Processes Models for Sustainable Land Management Applied to Modern Challenges. , 2017, , 151-190.		6
46	Historical Perspectives on Soil Mapping and Process Modeling for Sustainable Land Use Management. , 2017, , 3-28.		13
47	Climate and soil factors influencing seedling recruitment of plant species used for dryland restoration. Soil, 2016, 2, 287-298.	2.2	55
48	Environmental Factors Controlling Soil Organic Carbon Stocks in Two Contrasting Mediterranean Climatic Areas of Southern Spain. Land Degradation and Development, 2016, 27, 603-611.	1.8	59
49	Evaluation of forest ecosystem services in Mediterranean areas. A regional case study in South Spain. Ecosystem Services, 2016, 20, 82-90.	2.3	65
50	Soil quality indicators to assess functionality of restored soils in degraded semiarid ecosystems. Restoration Ecology, 2016, 24, S43.	1.4	132
51	Soil respiration dynamics in fire affected semi-arid ecosystems: Effects of vegetation type and environmental factors. Science of the Total Environment, 2016, 572, 1385-1394.	3.9	62
52	Soil physicochemical and microbiological indicators of short, medium and long term post-fire recovery in semi-arid ecosystems. Ecological Indicators, 2016, 63, 14-22.	2.6	131
53	Evaluating Soil Threats Under Climate Change Scenarios in the Andalusia Region, Southern Spain. Land Degradation and Development, 2015, 26, 441-449.	1.8	51
54	Application of CarboSOIL model to predict the effects of climate change on soil organic carbon stocks in agro-silvo-pastoral Mediterranean management systems. Agriculture, Ecosystems and Environment, 2015, 202, 8-16.	2.5	44

Miriam Muñoz-Rojas

#	Article	IF	CITATIONS
55	Impact of Land Use and Land Cover Changes on Organic Carbon Stocks in Mediterranean Soils (1956–2007). Land Degradation and Development, 2015, 26, 168-179.	1.8	146
56	Modelling soil organic carbon stocks in global change scenarios: a CarboSOIL application. Biogeosciences, 2013, 10, 8253-8268.	1.3	43
57	Organic carbon stocks in Mediterranean soil types under different land uses (Southern Spain). Solid Earth, 2012, 3, 375-386.	1.2	106
58	Short-term effects of experimental fire for a soil under eucalyptus forest (SE Australia). Geoderma, 2011, 167-168, 125-134.	2.3	99
59	Changes in land cover and vegetation carbon stocks in Andalusia, Southern Spain (1956–2007). Science of the Total Environment, 2011, 409, 2796-2806.	3.9	92
60	Mulching, Effects on Soil Physical Properties. Encyclopedia of Earth Sciences Series, 2011, , 492-496.	0.1	20