
Mark B Gerstein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7059353/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	RNA-Seq: a revolutionary tool for transcriptomics. Nature Reviews Genetics, 2009, 10, 57-63.	7.7	10,529
2	Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature, 2007, 447, 799-816.	13.7	4,709
3	Landscape of transcription in human cells. Nature, 2012, 489, 101-108.	13.7	4,484
4	GENCODE: The reference human genome annotation for The ENCODE Project. Genome Research, 2012, 22, 1760-1774.	2.4	4,217
5	Functional profiling of the Saccharomyces cerevisiae genome. Nature, 2002, 418, 387-391.	13.7	3,938
6	Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature, 2006, 440, 637-643.	13.7	2,681
7	GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Research, 2019, 47, D766-D773.	6.5	2,350
8	The Transcriptional Landscape of the Yeast Genome Defined by RNA Sequencing. Science, 2008, 320, 1344-1349.	6.0	2,180
9	Global Analysis of Protein Activities Using Proteome Chips. Science, 2001, 293, 2101-2105.	6.0	2,082
10	An integrated map of structural variation in 2,504 human genomes. Nature, 2015, 526, 75-81.	13.7	1,994
11	ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Research, 2012, 22, 1813-1831.	2.4	1,708
12	A Map of the Interactome Network of the Metazoan C. elegans. Science, 2004, 303, 540-543.	6.0	1,587
13	Comparing protein abundance and mRNA expression levels on a genomic scale. Genome Biology, 2003, 4, 117.	13.9	1,453
14	CNVnator: An approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. Genome Research, 2011, 21, 974-984.	2.4	1,387
15	Architecture of the human regulatory network derived from ENCODE data. Nature, 2012, 489, 91-100.	13.7	1,384
16	Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature, 2020, 583, 699-710.	13.7	1,252
17	A Bayesian Networks Approach for Predicting Protein-Protein Interactions from Genomic Data. Science, 2003, 302, 449-453.	6.0	1,183
18	Transcriptional landscape of the prenatal human brain. Nature, 2014, 508, 199-206.	13.7	1,147

#	Article	IF	CITATIONS
19	Personal Omics Profiling Reveals Dynamic Molecular and Medical Phenotypes. Cell, 2012, 148, 1293-1307.	13.5	1,134
20	The genomic complexity of primary human prostate cancer. Nature, 2011, 470, 214-220.	13.7	1,107
21	Extensive Promoter-Centered Chromatin Interactions Provide a Topological Basis for Transcription Regulation. Cell, 2012, 148, 84-98.	13.5	1,096
22	A Systematic Survey of Loss-of-Function Variants in Human Protein-Coding Genes. Science, 2012, 335, 823-828.	6.0	1,095
23	Comprehensive Molecular Characterization of Papillary Renal-Cell Carcinoma. New England Journal of Medicine, 2016, 374, 135-145.	13.9	1,040
24	Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nature Communications, 2019, 10, 5029.	5.8	1,007
25	Paired-End Mapping Reveals Extensive Structural Variation in the Human Genome. Science, 2007, 318, 420-426.	6.0	1,003
26	Mapping copy number variation by population-scale genome sequencing. Nature, 2011, 470, 59-65.	13.7	991
27	Global Identification of Human Transcribed Sequences with Genome Tiling Arrays. Science, 2004, 306, 2242-2246.	6.0	983
28	KBase: The United States Department of Energy Systems Biology Knowledgebase. Nature Biotechnology, 2018, 36, 566-569.	9.4	955
29	Genomic analysis of regulatory network dynamics reveals large topological changes. Nature, 2004, 431, 308-312.	13.7	921
30	Global analysis of protein phosphorylation in yeast. Nature, 2005, 438, 679-684.	13.7	915
31	Integrative Analysis of the <i>Caenorhabditis elegans</i> Genome by the modENCODE Project. Science, 2010, 330, 1775-1787.	6.0	912
32	FOXG1-Dependent Dysregulation of GABA/Glutamate Neuron Differentiation in Autism Spectrum Disorders. Cell, 2015, 162, 375-390.	13.5	894
33	The Importance of Bottlenecks in Protein Networks: Correlation with Gene Essentiality and Expression Dynamics. PLoS Computational Biology, 2007, 3, e59.	1.5	849
34	Analysis of yeast protein kinases using protein chips. Nature Genetics, 2000, 26, 283-289.	9.4	810
35	Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. Science, 2018, 362, .	6.0	805
36	Unlocking the secrets of the genome. Nature, 2009, 459, 927-930.	13.7	744

#	Article	IF	CITATIONS
37	Molecular Characterization of Neuroendocrine Prostate Cancer and Identification of New Drug Targets. Cancer Discovery, 2011, 1, 487-495.	7.7	725
38	Subcellular localization of the yeast proteome. Genes and Development, 2002, 16, 707-719.	2.7	667
39	Multi-platform discovery of haplotype-resolved structural variation in human genomes. Nature Communications, 2019, 10, 1784.	5.8	636
40	Defining functional DNA elements in the human genome. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6131-6138.	3.3	635
41	GENCODE 2021. Nucleic Acids Research, 2021, 49, D916-D923.	6.5	633
42	Comprehensive functional genomic resource and integrative model for the human brain. Science, 2018, 362, .	6.0	618
43	Relating Whole-Genome Expression Data with Protein-Protein Interactions. Genome Research, 2002, 12, 37-46.	2.4	605
44	Statistical analysis of amino acid patterns in transmembrane helices: the GxxxG motif occurs frequently and in association with β-branched residues at neighboring positions. Journal of Molecular Biology, 2000, 296, 921-936.	2.0	567
45	Volume changes on protein folding. Structure, 1994, 2, 641-649.	1.6	546
46	Spectral Biclustering of Microarray Data: Coclustering Genes and Conditions. Genome Research, 2003, 13, 703-716.	2.4	536
47	A standard reference frame for the description of nucleic acid base-pair geometry 1 1Edited by P. E. Wright 2 2This is a document of the Nomenclature Committee of IUBMB (NC-IUBMB)/IUPAC-IUBMB Joint Commission on Biochemical Nomenclature (JCBN), whose members are R. Cammack (chairman), A. Bairoch, H.M. Berman, S. Boyce, C.R. Cantor, K. Elliott, D. Horton, M. Kanehisa, A. Kotyk, G.P. Moss, N.	2.0	533
48	Sharon and K.F. Tipton Journal of Molecular Biology, 2001, 313, 229-237. What is a gene, post-ENCODE? History and updated definition. Genome Research, 2007, 17, 669-681.	2.4	530
49	Large-scale analysis of the yeast genome by transposon tagging and gene disruption. Nature, 1999, 402, 413-418.	13.7	521
50	Variation in Transcription Factor Binding Among Humans. Science, 2010, 328, 232-235.	6.0	521
51	Annotation Transfer Between Genomes: Protein-Protein Interologs and Protein-DNA Regulogs. Genome Research, 2004, 14, 1107-1118.	2.4	516
52	Integrative functional genomic analysis of human brain development and neuropsychiatric risks. Science, 2018, 362, .	6.0	516
53	PeakSeq enables systematic scoring of ChIP-seq experiments relative to controls. Nature Biotechnology, 2009, 27, 66-75.	9.4	514
54	The packing density in proteins: standard radii and volumes 1 1Edited by J. M. Thornton. Journal of Molecular Biology, 1999, 290, 253-266.	2.0	482

Mark B Gerstein

#	Article	IF	CITATIONS
55	Getting connected: analysis and principles of biological networks. Genes and Development, 2007, 21, 1010-1024.	2.7	477
56	A cis-regulatory map of the Drosophila genome. Nature, 2011, 471, 527-531.	13.7	477
57	New insights into Acinetobacter baumannii pathogenesis revealed by high-density pyrosequencing and transposon mutagenesis. Genes and Development, 2007, 21, 601-614.	2.7	455
58	Relating Three-Dimensional Structures to Protein Networks Provides Evolutionary Insights. Science, 2006, 314, 1938-1941.	6.0	447
59	Biochemical and genetic analysis of the yeast proteome with a movable ORF collection. Genes and Development, 2005, 19, 2816-2826.	2.7	443
60	MAPK target networks in <i>Arabidopsis thaliana</i> revealed using functional protein microarrays. Genes and Development, 2009, 23, 80-92.	2.7	438
61	Diverse Cellular Functions of the Hsp90 Molecular Chaperone Uncovered Using Systems Approaches. Cell, 2007, 131, 121-135.	13.5	437
62	Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing. Nature Genetics, 2020, 52, 331-341.	9.4	431
63	Analyses of non-coding somatic drivers in 2,658Âcancer whole genomes. Nature, 2020, 578, 102-111.	13.7	424
64	Role of non-coding sequence variants in cancer. Nature Reviews Genetics, 2016, 17, 93-108.	7.7	420
65	Annotating non-coding regions of the genome. Nature Reviews Genetics, 2010, 11, 559-571.	7.7	398
66	The relationship between protein structure and function: a comprehensive survey with application to the yeast genome. Journal of Molecular Biology, 1999, 288, 147-164.	2.0	384
67	The Reality of Pervasive Transcription. PLoS Biology, 2011, 9, e1000625.	2.6	380
68	Millions of Years of Evolution Preserved: A Comprehensive Catalog of the Processed Pseudogenes in the Human Genome. Genome Research, 2003, 13, 2541-2558.	2.4	376
69	The PsychENCODE project. Nature Neuroscience, 2015, 18, 1707-1712.	7.1	371
70	Differential binding of calmodulin-related proteins to their targets revealed through high-density Arabidopsis protein microarrays. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 4730-4735.	3.3	369
71	A Single-Cell Transcriptomic Atlas of Human Neocortical Development during Mid-gestation. Neuron, 2019, 103, 785-801.e8.	3.8	361
72	Haplotype-resolved diverse human genomes and integrated analysis of structural variation. Science, 2021, 372, .	6.0	358

#	Article	IF	CITATIONS
73	Somatic copy number mosaicism in human skin revealed by induced pluripotent stem cells. Nature, 2012, 492, 438-442.	13.7	355
74	Assessing annotation transfer for genomics: quantifying the relations between protein sequence, structure and function through traditional and probabilistic scores. Journal of Molecular Biology, 2000, 297, 233-249.	2.0	345
75	The genetic architecture of Down syndrome phenotypes revealed by high-resolution analysis of human segmental trisomies. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12031-12036.	3.3	342
76	Deciphering Protein Kinase Specificity Through Large-Scale Analysis of Yeast Phosphorylation Site Motifs. Science Signaling, 2010, 3, ra12.	1.6	341
77	Integrative Annotation of Variants from 1092 Humans: Application to Cancer Genomics. Science, 2013, 342, 1235587.	6.0	341
78	Defining the TRiC/CCT interactome links chaperonin function to stabilization of newly made proteins with complex topologies. Nature Structural and Molecular Biology, 2008, 15, 1255-1262.	3.6	340
79	A database of macromolecular motions. Nucleic Acids Research, 1998, 26, 4280-4290.	6.5	333
80	A myelopoiesis-associated regulatory intergenic noncoding RNA transcript within the human HOXA cluster. Blood, 2009, 113, 2526-2534.	0.6	330
81	Identification of a Disease-Defining Gene Fusion in Epithelioid Hemangioendothelioma. Science Translational Medicine, 2011, 3, 98ra82.	5.8	328
82	Divergence of Transcription Factor Binding Sites Across Related Yeast Species. Science, 2007, 317, 815-819.	6.0	320
83	Genomic analysis of essentiality within protein networks. Trends in Genetics, 2004, 20, 227-231.	2.9	303
84	Genomic analysis of the hierarchical structure of regulatory networks. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 14724-14731.	3.3	299
85	The real cost of sequencing: higher than you think!. Genome Biology, 2011, 12, 125.	13.9	299
86	Distribution of NF-ÂB-binding sites across human chromosome 22. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 12247-12252.	3.3	298
87	FunSeq2: a framework for prioritizing noncoding regulatory variants in cancer. Genome Biology, 2014, 15, 480.	3.8	291
88	Comparative analysis of the transcriptome across distant species. Nature, 2014, 512, 445-448.	13.7	289
89	AlleleSeq: analysis of alleleâ€specific expression and binding in a network framework. Molecular Systems Biology, 2011, 7, 522.	3.2	284
90	Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition. Nature Genetics, 2020, 52, 306-319.	9.4	275

#	Article	IF	CITATIONS
91	The minimum information required for reporting a molecular interaction experiment (MIMIx). Nature Biotechnology, 2007, 25, 894-898.	9.4	274
92	The GENCODE pseudogene resource. Genome Biology, 2012, 13, R51.	13.9	273
93	Structural proteomics of an archaeon. Nature Structural Biology, 2000, 7, 903-909.	9.7	272
94	Bridging structural biology and genomics: assessing protein interaction data with known complexes. Trends in Genetics, 2002, 18, 529-536.	2.9	265
95	Characterization of stressâ€responsive lnc <scp>RNA</scp> s in <i><scp>A</scp>rabidopsis thaliana</i> by integrating expression, epigenetic and structural features. Plant Journal, 2014, 80, 848-861.	2.8	264
96	The real cost of sequencing: scaling computation to keep pace with data generation. Genome Biology, 2016, 17, 53.	3.8	264
97	The transcriptional activity of human Chromosome 22. Genes and Development, 2003, 17, 529-540.	2.7	253
98	Normal mode analysis of macromolecular motions in a database framework: Developing mode concentration as a useful classifying statistic. Proteins: Structure, Function and Bioinformatics, 2002, 48, 682-695.	1.5	248
99	The Volume of Atoms on the Protein Surface: Calculated from Simulation, using Voronoi Polyhedra. Journal of Molecular Biology, 1995, 249, 955-966.	2.0	243
100	Genomic analysis of gene expression relationships in transcriptional regulatory networks. Trends in Genetics, 2003, 19, 422-427.	2.9	238
101	Protein family and fold occurrence in genomes: power-law behaviour and evolutionary model. Journal of Molecular Biology, 2001, 313, 673-681.	2.0	237
102	Complex transcriptional circuitry at the G1/S transition in Saccharomyces cerevisiae. Genes and Development, 2002, 16, 3017-3033.	2.7	236
103	Classification of human genomic regions based on experimentally determined binding sites of more than 100 transcription-related factors. Genome Biology, 2012, 13, R48.	13.9	233
104	The Temporal Patterning MicroRNA let-7 Regulates Several Transcription Factors at the Larval to Adult Transition in C. elegans. Developmental Cell, 2005, 8, 321-330.	3.1	231
105	Modeling gene expression using chromatin features in various cellular contexts. Genome Biology, 2012, 13, R53.	13.9	231
106	exRNA Atlas Analysis Reveals Distinct Extracellular RNA Cargo Types and Their Carriers Present across Human Biofluids. Cell, 2019, 177, 463-477.e15.	13.5	228
107	Gaining comprehensive biological insight into the transcriptome by performing a broad-spectrum RNA-seq analysis. Nature Communications, 2017, 8, 59.	5.8	225
108	Patterns of nucleotide substitution, insertion and deletion in the human genome inferred from pseudogenes. Nucleic Acids Research, 2003, 31, 5338-5348.	6.5	224

#	Article	IF	CITATIONS
109	Diverse transcription factor binding features revealed by genome-wide ChIP-seq in <i>C. elegans</i> . Genome Research, 2011, 21, 245-254.	2.4	224
110	Regulation of Gene Expression by a Metabolic Enzyme. Science, 2004, 306, 482-484.	6.0	223
111	Transcriptome and epigenome landscape of human cortical development modeled in organoids. Science, 2018, 362, .	6.0	220
112	TOS9 Regulates White-Opaque Switching in Candida albicans. Eukaryotic Cell, 2006, 5, 1674-1687.	3.4	207
113	The role of disorder in interaction networks: a structural analysis. Molecular Systems Biology, 2008, 4, 179.	3.2	206
114	The origin, evolution, and functional impact of short insertion–deletion variants identified in 179 human genomes. Genome Research, 2013, 23, 749-761.	2.4	206
115	Computational analysis of membrane proteins: the largest class of drug targets. Drug Discovery Today, 2009, 14, 1130-1135.	3.2	204
116	Comparative analysis of processed pseudogenes in the mouse and human genomes. Trends in Genetics, 2004, 20, 62-67.	2.9	201
117	Extensive In Vivo Metabolite-Protein Interactions Revealed by Large-Scale Systematic Analyses. Cell, 2010, 143, 639-650.	13.5	200
118	Reconstruction of enhancer–target networks in 935 samples of human primary cells, tissues and cell lines. Nature Genetics, 2017, 49, 1428-1436.	9.4	194
119	Molecular and cellular reorganization of neural circuits in the human lineage. Science, 2017, 358, 1027-1032.	6.0	192
120	Pseudogenes in the ENCODE regions: Consensus annotation, analysis of transcription, and evolution. Genome Research, 2007, 17, 839-851.	2.4	191
121	Comprehensive assessment of automatic structural alignment against a manual standard, the scop classification of proteins. Protein Science, 1998, 7, 445-456.	3.1	190
122	Mapping accessible chromatin regions using Sono-Seq. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 14926-14931.	3.3	186
123	Diverse Roles and Interactions of the SWI/SNF Chromatin Remodeling Complex Revealed Using Global Approaches. PLoS Genetics, 2011, 7, e1002008.	1.5	185
124	PROTEIN FOLDING:The Endgame. Annual Review of Biochemistry, 1997, 66, 549-579.	5.0	184
125	Comparative analysis of regulatory information and circuits across distant species. Nature, 2014, 512, 453-456.	13.7	184
126	Integrative Personal Omics Profiles during Periods of Weight Gain and Loss. Cell Systems, 2018, 6, 157-170.e8.	2.9	183

#	Article	IF	CITATIONS
127	Assessing the limits of genomic data integration for predicting protein networks. Genome Research, 2005, 15, 945-953.	2.4	182
128	Mapping of transcription factor binding regions in mammalian cells by ChIP: Comparison of array- and sequencing-based technologies. Genome Research, 2007, 17, 898-909.	2.4	181
129	Identification and Analysis of Over 2000 Ribosomal Protein Pseudogenes in the Human Genome. Genome Research, 2002, 12, 1466-1482.	2.4	179
130	Discovery of non-ETS gene fusions in human prostate cancer using next-generation RNA sequencing. Genome Research, 2011, 21, 56-67.	2.4	179
131	Tracking Distinct RNA Populations Using Efficient and Reversible Covalent Chemistry. Molecular Cell, 2015, 59, 858-866.	4.5	179
132	Quantifying environmental adaptation of metabolic pathways in metagenomics. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1374-1379.	3.3	177
133	Transcribed processed pseudogenes in the human genome: an intermediate form of expressed retrosequence lacking protein-coding ability. Nucleic Acids Research, 2005, 33, 2374-2383.	6.5	175
134	Studying Genomes Through the Aeons: Protein Families, Pseudogenes and Proteome Evolution. Journal of Molecular Biology, 2002, 318, 1155-1174.	2.0	174
135	A question of size: the eukaryotic proteome and the problems in defining it. Nucleic Acids Research, 2002, 30, 1083-1090.	6.5	172
136	Bayesian Modeling of the Yeast SH3 Domain Interactome Predicts Spatiotemporal Dynamics of Endocytosis Proteins. PLoS Biology, 2009, 7, e1000218.	2.6	172
137	Beyond synexpression relationships: local clustering of time-shifted and inverted gene expression profiles identifies new, biologically relevant interactions. Journal of Molecular Biology, 2001, 314, 1053-1066.	2.0	171
138	Diverse human extracellular RNAs are widely detected in human plasma. Nature Communications, 2016, 7, 11106.	5.8	170
139	PseudoPipe: an automated pseudogene identification pipeline. Bioinformatics, 2006, 22, 1437-1439.	1.8	169
140	Sixteen diverse laboratory mouse reference genomes define strain-specific haplotypes and novel functional loci. Nature Genetics, 2018, 50, 1574-1583.	9.4	169
141	Dynamic transcriptomes during neural differentiation of human embryonic stem cells revealed by short, long, and paired-end sequencing. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5254-5259.	3.3	168
142	Molecular Fossils in the Human Genome: Identification and Analysis of the Pseudogenes in Chromosomes 21 and 22. Genome Research, 2002, 12, 272-280.	2.4	167
143	MolMovDB: analysis and visualization of conformational change and structural flexibility. Nucleic Acids Research, 2003, 31, 478-482.	6.5	167
144	Analyzing protein function on a genomic scale: the importance of gold-standard positives and negatives for network prediction. Current Opinion in Microbiology, 2004, 7, 535-545.	2.3	167

#	Article	IF	CITATIONS
145	Close association of RNA polymerase II and many transcription factors with Pol III genes. Proceedings of the United States of America, 2010, 107, 3639-3644.	3.3	167
146	Understanding transcriptional regulation by integrative analysis of transcription factor binding data. Genome Research, 2012, 22, 1658-1667.	2.4	166
147	Genome-Wide Identification of Binding Sites Defines Distinct Functions for Caenorhabditis elegans PHA-4/FOXA in Development and Environmental Response. PLoS Genetics, 2010, 6, e1000848.	1.5	165
148	The ModERN Resource: Genome-Wide Binding Profiles for Hundreds of <i>Drosophila</i> and <i>Caenorhabditis elegans</i> Transcription Factors. Genetics, 2018, 208, 937-949.	1.2	164
149	Analysis of protein loop closure. Journal of Molecular Biology, 1991, 220, 133-149.	2.0	163
150	Interpretation of Genomic Variants Using a Unified Biological Network Approach. PLoS Computational Biology, 2013, 9, e1002886.	1.5	162
151	Insights into genetics, human biology and disease gleaned from family based genomic studies. Genetics in Medicine, 2019, 21, 798-812.	1.1	161
152	Domain Closure in Lactoferrin. Journal of Molecular Biology, 1993, 234, 357-372.	2.0	160
153	Volume changes in protein evolution. Journal of Molecular Biology, 1994, 236, 1067-1078.	2.0	160
154	CREB Binds to Multiple Loci on Human Chromosome 22. Molecular and Cellular Biology, 2004, 24, 3804-3814.	1.1	160
155	Nucleotide-resolution analysis of structural variants using BreakSeq and a breakpoint library. Nature Biotechnology, 2010, 28, 47-55.	9.4	158
156	Pseudogene.org: a comprehensive database and comparison platform for pseudogene annotation. Nucleic Acids Research, 2007, 35, D55-D60.	6.5	156
157	Interrelating Different Types of Genomic Data, from Proteome to Secretome: 'Oming in on Function. Genome Research, 2001, 11, 1463-1468.	2.4	155
158	Multi-species microarrays reveal the effect of sequence divergence on gene expression profiles. Genome Research, 2005, 15, 674-680.	2.4	155
159	Dermal Adipocyte Lipolysis and Myofibroblast Conversion Are Required for Efficient Skin Repair. Cell Stem Cell, 2020, 26, 880-895.e6.	5.2	154
160	A structural census of genomes: comparing bacterial, eukaryotic, and archaeal genomes in terms of protein structure. Journal of Molecular Biology, 1997, 274, 562-576.	2.0	153
161	Target hub proteins serve as master regulators of development in yeast. Genes and Development, 2006, 20, 435-448.	2.7	153
162	The Extracellular RNA Communication Consortium: Establishing Foundational Knowledge and Technologies for Extracellular RNA Research. Cell, 2019, 177, 231-242.	13.5	152

#	Article	IF	CITATIONS
163	Major Molecular Differences between Mammalian Sexes Are Involved in Drug Metabolism and Renal Function. Developmental Cell, 2004, 6, 791-800.	3.1	151
164	Structured RNAs in the ENCODE selected regions of the human genome. Genome Research, 2007, 17, 852-864.	2.4	150
165	Identification and analysis of unitary pseudogenes: historic and contemporary gene losses in humans and other primates. Genome Biology, 2010, 11, R26.	13.9	150
166	Epigenetic Repression of miR-31 Disrupts Androgen Receptor Homeostasis and Contributes to Prostate Cancer Progression. Cancer Research, 2013, 73, 1232-1244.	0.4	150
167	GATA-1 binding sites mapped in the Â-globin locus by using mammalian chlp-chip analysis. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 2924-2929.	3.3	149
168	Zebrafish miR-1 and miR-133 shape muscle gene expression and regulate sarcomeric actin organization. Genes and Development, 2009, 23, 619-632.	2.7	149
169	Large-scale analysis of pseudogenes in the human genome. Current Opinion in Genetics and Development, 2004, 14, 328-335.	1.5	147
170	Modeling the relative relationship of transcription factor binding and histone modifications to gene expression levels in mouse embryonic stem cells. Nucleic Acids Research, 2012, 40, 553-568.	6.5	145
171	A Bayesian system integrating expression data with sequence patterns for localizing proteins: comprehensive application to the yeast genome 1 1Edited by F. Cohen. Journal of Molecular Biology, 2000, 301, 1059-1075.	2.0	142
172	Network Modeling Identifies Molecular Functions Targeted by miR-204 to Suppress Head and Neck Tumor Metastasis. PLoS Computational Biology, 2010, 6, e1000730.	1.5	140
173	Whole-genome Trees Based on the Occurrence of Folds and Orthologs: Implications for Comparing Genomes on Different Levels. Genome Research, 2000, 10, 808-818.	2.4	139
174	Mining the Structural Genomics Pipeline: Identification of Protein Properties that Affect High-throughput Experimental Analysis. Journal of Molecular Biology, 2004, 336, 115-130.	2.0	138
175	A multiregional proteomic survey of the postnatal human brain. Nature Neuroscience, 2017, 20, 1787-1795.	7.1	138
176	Normal modes for predicting protein motions: A comprehensive database assessment and associated Web tool. Protein Science, 2005, 14, 633-643.	3.1	137
177	Revisiting the codon adaptation index from a whole-genome perspective: analyzing the relationship between gene expression and codon occurrence in yeast using a variety of models. Nucleic Acids Research, 2003, 31, 2242-2251.	6.5	136
178	Analyzing Cellular Biochemistry in Terms of Molecular Networks. Annual Review of Biochemistry, 2004, 73, 1051-1087.	5.0	133
179	Positive selection at the protein network periphery: Evaluation in terms of structural constraints and cellular context. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20274-20279.	3.3	132
180	MetaSV: an accurate and integrative structural-variant caller for next generation sequencing. Bioinformatics, 2015, 31, 2741-2744.	1.8	131

11

#	Article	IF	CITATIONS
181	Use of Thioredoxin as a Reporter To Identify a Subset of Escherichia coli Signal Sequences That Promote Signal Recognition Particle-Dependent Translocation. Journal of Bacteriology, 2005, 187, 2983-2991.	1.0	128
182	Analysis of copy number variants and segmental duplications in the human genome: Evidence for a change in the process of formation in recent evolutionary history. Genome Research, 2008, 18, 1865-1874.	2.4	126
183	High-resolution mapping of DNA copy alterations in human chromosome 22 using high-density tiling oligonucleotide arrays. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4534-4539.	3.3	125
184	Measuring the reproducibility and quality of Hi-C data. Genome Biology, 2019, 20, 57.	3.8	125
185	RNA expression patterns change dramatically in human neutrophils exposed to bacteria. Blood, 2001, 97, 2457-2468.	0.6	124
186	Perspectives on ENCODE. Nature, 2020, 583, 693-698.	13.7	123
187	Comprehensive analysis of amino acid and nucleotide composition in eukaryotic genomes, comparing genes and pseudogenes. Nucleic Acids Research, 2002, 30, 2515-2523.	6.5	121
188	DNA replication-timing analysis of human chromosome 22 at high resolution and different developmental states. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 17771-17776.	3.3	121
189	Chromatin state signatures associated with tissue-specific gene expression and enhancer activity in the embryonic limb. Genome Research, 2012, 22, 1069-1080.	2.4	121
190	Domain Closure in Adenylate Kinase. Journal of Molecular Biology, 1993, 229, 494-501.	2.0	119
191	Personal genome sequencing: current approaches and challenges. Genes and Development, 2010, 24, 423-431.	2.7	119
192	How representative are the known structures of the proteins in a complete genome? A comprehensive structural census. Folding & Design, 1998, 3, 497-512.	4.5	118
193	Robotic Cloning and Protein Production Platform of the Northeast Structural Genomics Consortium. Methods in Enzymology, 2005, 394, 210-243.	0.4	118
194	exceRpt: A Comprehensive Analytic Platform for Extracellular RNA Profiling. Cell Systems, 2019, 8, 352-357.e3.	2.9	118
195	Systematic evaluation of variability in ChIP-chip experiments using predefined DNA targets. Genome Research, 2008, 18, 393-403.	2.4	117
196	The stability of thermophilic proteins: a study based on comprehensive genome comparison. Functional and Integrative Genomics, 2000, 1, 76-88.	1.4	114
197	GENOMICS: Defining Genes in the Genomics Era. Science, 2003, 300, 258-260.	6.0	114
198	An integrated approach for finding overlooked genes in yeast. Nature Biotechnology, 2002, 20, 58-63.	9.4	112

#	Article	IF	CITATIONS
199	Systematic Learning of Gene Functional Classes From DNA Array Expression Data by Using Multilayer Perceptrons. Genome Research, 2002, 12, 1703-1715.	2.4	111
200	Predicting essential genes in fungal genomes. Genome Research, 2006, 16, 1126-1135.	2.4	109
201	A Genome-Wide Analysis of Blue-Light Regulation of Arabidopsis Transcription Factor Gene Expression during Seedling Development Â. Plant Physiology, 2003, 133, 1480-1493.	2.3	108
202	N-myc Downstream Regulated Gene 1 (NDRG1) Is Fused to ERG in Prostate Cancer. Neoplasia, 2009, 11, 804-W18.	2.3	105
203	Detecting and annotating genetic variations using the HugeSeq pipeline. Nature Biotechnology, 2012, 30, 226-229.	9.4	104
204	Patterns of protein-fold usage in eight microbial genomes: A comprehensive structural census. , 1998, 33, 518-534.		103
205	Getting Started in Gene Orthology and Functional Analysis. PLoS Computational Biology, 2010, 6, e1000703.	1.5	100
206	Protein fossils live on as RNA. Nature, 2008, 453, 729-731.	13.7	99
207	High-Resolution Copy-Number Variation Map Reflects Human Olfactory Receptor Diversity and Evolution. PLoS Genetics, 2008, 4, e1000249.	1.5	99
208	Repeat associated mechanisms of genome evolution and function revealed by the <i>Mus caroli</i> and <i>Mus pahari</i> genomes. Genome Research, 2018, 28, 448-459.	2.4	99
209	A small reservoir of disabled ORFs in the yeast genome and its implications for the dynamics of proteome evolution. Journal of Molecular Biology, 2002, 316, 409-419.	2.0	98
210	The ambiguous boundary between genes and pseudogenes: the dead rise up, or do they?. Trends in Genetics, 2007, 23, 219-224.	2.9	98
211	Passenger Mutations in More Than 2,500 Cancer Genomes: Overall Molecular Functional Impact and Consequences. Cell, 2020, 180, 915-927.e16.	13.5	98
212	Average Core Structures and Variability Measures for Protein Families: Application to the Immunoglobulins. Journal of Molecular Biology, 1995, 251, 161-175.	2.0	97
213	Improved Reconstruction of In Silico Gene Regulatory Networks by Integrating Knockout and Perturbation Data. PLoS ONE, 2010, 5, e8121.	1.1	97
214	Measuring the Evolutionary Rewiring of Biological Networks. PLoS Computational Biology, 2011, 7, e1001050.	1.5	96
215	Keeping the shape but changing the charges: A simulation study of urea and its isoâ€steric analogs. Journal of Chemical Physics, 1996, 104, 9417-9430.	1.2	95
216	Global changes in STAT target selection and transcription regulation upon interferon treatments. Genes and Development, 2005, 19, 2953-2968.	2.7	95

#	Article	IF	CITATIONS
217	Pangolin genomes and the evolution of mammalian scales and immunity. Genome Research, 2016, 26, 1312-1322.	2.4	95
218	An integrative ENCODE resource for cancer genomics. Nature Communications, 2020, 11, 3696.	5.8	95
219	Genomic and proteomic analysis of the myeloid differentiation program. Blood, 2001, 98, 513-524.	0.6	94
220	RSEQtools: a modular framework to analyze RNA-Seq data using compact, anonymized data summaries. Bioinformatics, 2011, 27, 281-283.	1.8	93
221	An ensemble approach to accurately detect somatic mutations using SomaticSeq. Genome Biology, 2015, 16, 197.	3.8	93
222	Issues in the analysis of oligonucleotide tiling microarrays for transcript mapping. Trends in Genetics, 2005, 21, 466-475.	2.9	92
223	The current excitement about copy-number variation: how it relates to gene duplications and protein families. Current Opinion in Structural Biology, 2008, 18, 366-374.	2.6	92
224	Construction and Analysis of an Integrated Regulatory Network Derived from High-Throughput Sequencing Data. PLoS Computational Biology, 2011, 7, e1002190.	1.5	92
225	HiC-spector: a matrix library for spectral and reproducibility analysis of Hi-C contact maps. Bioinformatics, 2017, 33, 2199-2201.	1.8	92
226	Identification of a Major Determinant for Serine-Threonine Kinase Phosphoacceptor Specificity. Molecular Cell, 2014, 53, 140-147.	4.5	91
227	Dynamic and complex transcription factor binding during an inducible response in yeast. Genes and Development, 2009, 23, 1351-1363.	2.7	89
228	Genomic and proteomic analysis of the myeloid differentiation program: global analysis of gene expression during induced differentiation in the MPRO cell line. Blood, 2002, 100, 3209-3220.	0.6	88
229	Tcf7 Is an Important Regulator of the Switch of Self-Renewal and Differentiation in a Multipotential Hematopoietic Cell Line. PLoS Genetics, 2012, 8, e1002565.	1.5	88
230	Data mining crystallization databases: Knowledge-based approaches to optimize protein crystal screens. Proteins: Structure, Function and Bioinformatics, 2003, 51, 562-568.	1.5	87
231	Identification of pseudogenes in the Drosophila melanogaster genome. Nucleic Acids Research, 2003, 31, 1033-1037.	6.5	87
232	Comparative analysis of processed ribosomal protein pseudogenes in four mammalian genomes. Genome Biology, 2009, 10, R2.	13.9	87
233	Allele-specific epigenome maps reveal sequence-dependent stochastic switching at regulatory loci. Science, 2018, 361, .	6.0	87
234	Distinct genomic aberrations associated with <i>ERG</i> rearranged prostate cancer. Genes Chromosomes and Cancer, 2009, 48, 366-380.	1.5	86

#	Article	IF	CITATIONS
235	EBNA1 regulates cellular gene expression by binding cellular promoters. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 22421-22426.	3.3	83
236	Global Identification and Characterization of Transcriptionally Active Regions in the Rice Genome. PLoS ONE, 2007, 2, e294.	1.1	82
237	Understanding Modularity in Molecular Networks Requires Dynamics. Science Signaling, 2009, 2, pe44.	1.6	82
238	Analysis of genomic variation in non-coding elements using population-scale sequencing data from the 1000 Genomes Project. Nucleic Acids Research, 2011, 39, 7058-7076.	6.5	81
239	MUSIC: identification of enriched regions in ChIP-Seq experiments using a mappability-corrected multiscale signal processing framework. Genome Biology, 2014, 15, 474.	3.8	81
240	TopNet: a tool for comparing biological sub-networks, correlating protein properties with topological statistics. Nucleic Acids Research, 2004, 32, 328-337.	6.5	80
241	Comparing genomes in terms of protein structure: surveys of a finite parts list. FEMS Microbiology Reviews, 1998, 22, 277-304.	3.9	79
242	Quantification of private information leakage from phenotype-genotype data: linking attacks. Nature Methods, 2016, 13, 251-256.	9.0	79
243	Structural proteomics: prospects for high throughput sample preparation. Progress in Biophysics and Molecular Biology, 2000, 73, 339-345.	1.4	78
244	Systematic prediction and validation of breakpoints associated with copy-number variants in the human genome. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10110-10115.	3.3	78
245	A uniform survey of allele-specific binding and expression over 1000-Genomes-Project individuals. Nature Communications, 2016, 7, 11101.	5.8	78
246	PROTEOMICS: Enhanced: Integrating Interactomes. Science, 2002, 295, 284-287.	6.0	77
247	Robust-Linear-Model Normalization To Reduce Technical Variability in Functional Protein Microarrays. Journal of Proteome Research, 2009, 8, 5451-5464.	1.8	77
248	Analysis of deletion breakpoints from 1,092 humans reveals details of mutation mechanisms. Nature Communications, 2015, 6, 7256.	5.8	77
249	Stereochemical basis of DNA recognition by Zn fingers. Nucleic Acids Research, 1994, 22, 3397-3405.	6.5	76
250	Genomic Analysis of the Hydrocarbon-Producing, Cellulolytic, Endophytic Fungus Ascocoryne sarcoides. PLoS Genetics, 2012, 8, e1002558.	1.5	76
251	A comprehensive catalog of predicted functional upstream open reading frames in humans. Nucleic Acids Research, 2018, 46, 3326-3338.	6.5	76
252	Reliability of Whole-Exome Sequencing for Assessing Intratumor Genetic Heterogeneity. Cell Reports, 2018, 25, 1446-1457.	2.9	76

#	Article	IF	CITATIONS
253	Predicting changes in protein thermodynamic stability upon point mutation with deep 3D convolutional neural networks. PLoS Computational Biology, 2020, 16, e1008291.	1.5	76
254	Strategies for structural proteomics of prokaryotes: Quantifying the advantages of studying orthologous proteins and of using both NMR and X-ray crystallography approaches. Proteins: Structure, Function and Bioinformatics, 2003, 50, 392-399.	1.5	75
255	Seeking a New Biology through Text Mining. Cell, 2008, 134, 9-13.	13.5	75
256	Comparing genomes to computer operating systems in terms of the topology and evolution of their regulatory control networks. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9186-9191.	3.3	75
257	Integration of genomic datasets to predict protein complexes in yeast. Journal of Structural and Functional Genomics, 2002, 2, 71-81.	1.2	74
258	Enhanced transcriptome maps from multiple mouse tissues reveal evolutionary constraint in gene expression. Nature Communications, 2015, 6, 5903.	5.8	73
259	Applications of DNA tiling arrays to experimental genome annotation and regulatory pathway discovery. Chromosome Research, 2005, 13, 259-274.	1.0	72
260	Comparative analysis of pseudogenes across three phyla. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13361-13366.	3.3	72
261	LARVA: an integrative framework for large-scale analysis of recurrent variants in noncoding annotations. Nucleic Acids Research, 2015, 43, 8123-8134.	6.5	72
262	Expectations and blind spots for structural variation detection from long-read assemblies and short-read genome sequencing technologies. American Journal of Human Genetics, 2021, 108, 919-928.	2.6	72
263	Integrative Microarray Analysis of Pathways Dysregulated in Metastatic Prostate Cancer. Cancer Research, 2007, 67, 10296-10303.	0.4	71
264	Supervised enhancer prediction with epigenetic pattern recognition and targeted validation. Nature Methods, 2020, 17, 807-814.	9.0	71
265	Targeting the Human Cancer Pathway Protein Interaction Network by Structural Genomics. Molecular and Cellular Proteomics, 2008, 7, 2048-2060.	2.5	70
266	Modeling ChIP Sequencing In Silico with Applications. PLoS Computational Biology, 2008, 4, e1000158.	1.5	70
267	Exploring the range of protein flexibility, from a structural proteomics perspective. Current Opinion in Chemical Biology, 2004, 8, 14-19.	2.8	69
268	Integrated Pseudogene Annotation for Human Chromosome 22: Evidence for Transcription. Journal of Molecular Biology, 2005, 349, 27-45.	2.0	69
269	Small RNAs Originated from Pseudogenes: cis- or trans-Acting?. PLoS Computational Biology, 2009, 5, e1000449.	1.5	69
270	Annotation Transfer for Genomics: Measuring Functional Divergence in Multi-Domain Proteins. Genome Research, 2001, 11, 1632-1640.	2.4	69

#	Article	IF	CITATIONS
271	Genomics and Privacy: Implications of the New Reality of Closed Data for the Field. PLoS Computational Biology, 2011, 7, e1002278.	1.5	67
272	Analysis of diverse regulatory networks in a hierarchical context shows consistent tendencies for collaboration in the middle levels. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6841-6846.	3.3	65
273	VAT: a computational framework to functionally annotate variants in personal genomes within a cloud-computing environment. Bioinformatics, 2012, 28, 2267-2269.	1.8	65
274	One thousand somatic SNVs per skin fibroblast cell set baseline of mosaic mutational load with patterns that suggest proliferative origin. Genome Research, 2017, 27, 512-523.	2.4	64
275	Quantum computing at the frontiers of biological sciences. Nature Methods, 2021, 18, 701-709.	9.0	64
276	Genome-wide analysis relating expression level with protein subcellular localization. Trends in Genetics, 2000, 16, 426-430.	2.9	63
277	Toward a universal microarray: prediction of gene expression through nearest-neighbor probe sequence identification. Nucleic Acids Research, 2007, 35, e99-e99.	6.5	63
278	Computational analysis of membrane proteins: genomic occurrence, structure prediction and helix interactions. Quarterly Reviews of Biophysics, 2004, 37, 121-146.	2.4	62
279	Diverse protein kinase interactions identified by protein microarrays reveal novel connections between cellular processes. Genes and Development, 2011, 25, 767-778.	2.7	60
280	Prediction and characterization of noncoding RNAs in C. elegans by integrating conservation, secondary structure, and high-throughput sequencing and array data. Genome Research, 2011, 21, 276-285.	2.4	60
281	Comparing classical pathways and modern networks: towards the development of an edge ontology. Trends in Biochemical Sciences, 2007, 32, 320-331.	3.7	59
282	Decoding neuroproteomics: integrating the genome, translatome and functional anatomy. Nature Neuroscience, 2014, 17, 1491-1499.	7.1	59
283	VarSim: a high-fidelity simulation and validation framework for high-throughput genome sequencing with cancer applications. Bioinformatics, 2015, 31, 1469-1471.	1.8	59
284	Genome-Wide Mapping of Copy Number Variation in Humans: Comparative Analysis of High Resolution Array Platforms. PLoS ONE, 2011, 6, e27859.	1.1	59
285	MicroRNAs Establish Uniform Traits during the Architecture of Vertebrate Embryos. Developmental Cell, 2017, 40, 552-565.e5.	3.1	58
286	Dynamic RNA–protein interactions underlie the zebrafish maternal-to-zygotic transition. Genome Research, 2017, 27, 1184-1194.	2.4	58
287	Simulating Water and the Molecules of Life. Scientific American, 1998, 279, 100-105.	1.0	56
288	Statistical analysis of the genomic distribution and correlation of regulatory elements in the ENCODE regions. Genome Research, 2007, 17, 787-797.	2.4	56

#	Article	IF	CITATIONS
289	SPINE 2: a system for collaborative structural proteomics within a federated database framework. Nucleic Acids Research, 2003, 31, 2833-2838.	6.5	55
290	Integrated Assessment of Genomic Correlates of Protein Evolutionary Rate. PLoS Computational Biology, 2009, 5, e1000413.	1.5	55
291	Rewiring of Transcriptional Regulatory Networks: Hierarchy, Rather Than Connectivity, Better Reflects the Importance of Regulators. Science Signaling, 2010, 3, ra79.	1.6	55
292	Identifying Allosteric Hotspots with Dynamics: Application to Inter- and Intra-species Conservation. Structure, 2016, 24, 826-837.	1.6	55
293	Selection and Characterization of Small Random Transmembrane Proteins that Bind and Activate the Platelet-derived Growth Factor β Receptor. Journal of Molecular Biology, 2004, 338, 907-920.	2.0	54
294	Predicting the frequencies of drug side effects. Nature Communications, 2020, 11, 4575.	5.8	54
295	Large-Scale Mutagenesis of the Yeast Genome Using a Tn7-Derived Multipurpose Transposon. Genome Research, 2004, 14, 1975-1986.	2.4	52
296	TIP: A probabilistic method for identifying transcription factor target genes from ChIP-seq binding profiles. Bioinformatics, 2011, 27, 3221-3227.	1.8	52
297	Analysis of variable retroduplications in human populations suggests coupling of retrotransposition to cell division. Genome Research, 2013, 23, 2042-2052.	2.4	52
298	Germline variant burden in cancer genes correlates with age at diagnosis and somatic mutation burden. Nature Communications, 2020, 11, 2438.	5.8	52
299	Ontologies for proteomics: towards a systematic definition of structure and function that scales to the genome level. Current Opinion in Chemical Biology, 2003, 7, 44-54.	2.8	51
300	Proton sensitivity of ASIC1 appeared with the rise of fishes by changes of residues in the region that follows TM1 in the ectodomain of the channel. Journal of Physiology, 2005, 568, 725-735.	1.3	51
301	How far can sequences diverge?. Nature, 1997, 385, 579-581.	13.7	50
302	A genomic analysis of RNA polymerase II modification and chromatin architecture related to 3′ end RNA polyadenylation. Genome Research, 2008, 18, 1224-1237.	2.4	50
303	The human genome has 49 cytochrome c pseudogenes, including a relic of a primordial gene that still functions in mouse. Gene, 2003, 312, 61-72.	1.0	49
304	Integration of extracellular RNA profiling data using metadata, biomedical ontologies and Linked Data technologies. Journal of Extracellular Vesicles, 2015, 4, 27497.	5.5	48
305	Neuronal and glial 3D chromatin architecture informs the cellular etiology of brain disorders. Nature Communications, 2021, 12, 3968.	5.8	48
306	Design optimization methods for genomic DNA tiling arrays. Genome Research, 2005, 16, 271-281.	2.4	46

#	Article	IF	CITATIONS
307	OrthoClust: an orthology-based network framework for clustering data across multiple species. Genome Biology, 2014, 15, R100.	13.9	46
308	FusorSV: an algorithm for optimally combining data from multiple structural variation detection methods. Genome Biology, 2018, 19, 38.	3.8	46
309	Genomics and data science: an application within an umbrella. Genome Biology, 2019, 20, 109.	3.8	46
310	PartsList: a web-based system for dynamically ranking protein folds based on disparate attributes, including whole-genome expression and interaction information. Nucleic Acids Research, 2001, 29, 1750-1764.	6.5	45
311	Revealing the brain's molecular architecture. Science, 2018, 362, 1262-1263.	6.0	45
312	Structured digital abstract makes text mining easy. Nature, 2007, 447, 142-142.	13.7	44
313	<i>StoneHinge</i> : Hinge prediction by network analysis of individual protein structures. Protein Science, 2009, 18, 359-371.	3.1	44
314	MicroRNA-dependent regulation of biomechanical genes establishes tissue stiffness homeostasis. Nature Cell Biology, 2019, 21, 348-358.	4.6	44
315	Centers for Mendelian Genomics: A decade of facilitating gene discovery. Genetics in Medicine, 2022, 24, 784-797.	1.1	44
316	Association of cytokeratin 7 and 19 expression with genomic stability and favorable prognosis in clear cell renal cell cancer. International Journal of Cancer, 2008, 123, 569-576.	2.3	43
317	MrTADFinder: A network modularity based approach to identify topologically associating domains in multiple resolutions. PLoS Computational Biology, 2017, 13, e1005647.	1.5	42
318	DNA recognition and superstructure formation by helix-turn-helix proteins. Protein Engineering, Design and Selection, 1995, 8, 329-338.	1.0	41
319	Personal phenotypes to go with personal genomes. Molecular Systems Biology, 2009, 5, 273.	3.2	41
320	Pseudofam: the pseudogene families database. Nucleic Acids Research, 2009, 37, D738-D743.	6.5	41
321	The human proteome – a scientific opportunity for transforming diagnostics, therapeutics, and healthcare. Clinical Proteomics, 2012, 9, 6.	1.1	41
322	Simulating the minimum core for hydrophobic collapse in globular proteins. Protein Science, 1997, 6, 2606-2616.	3.1	40
323	Analysis of membrane proteins in metagenomics: Networks of correlated environmental features and protein families. Genome Research, 2010, 20, 960-971.	2.4	40
324	Using ALoFT to determine the impact of putative loss-of-function variants in protein-coding genes. Nature Communications, 2017, 8, 382.	5.8	40

#	Article	IF	CITATIONS
325	Largeâ€scale atlas of microarray data reveals the distinct expression landscape of different tissues in Arabidopsis. Plant Journal, 2016, 86, 472-480.	2.8	39
326	The Spread of Scientific Information: Insights from the Web Usage Statistics in PLoS Article-Level Metrics. PLoS ONE, 2011, 6, e19917.	1.1	39
327	ExpressYourself: a modular platform for processing and visualizing microarray data. Nucleic Acids Research, 2003, 31, 3477-3482.	6.5	38
328	Transmembrane protein domains rarely use covalent domain recombination as an evolutionary mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 3495-3497.	3.3	38
329	HingeMaster: Normal mode hinge prediction approach and integration of complementary predictors. Proteins: Structure, Function and Bioinformatics, 2008, 73, 299-319.	1.5	38
330	Whole-genome analysis of papillary kidney cancer finds significant noncoding alterations. PLoS Genetics, 2017, 13, e1006685.	1.5	38
331	Sequence variation in G-protein-coupled receptors: analysis of single nucleotide polymorphisms. Nucleic Acids Research, 2005, 33, 1710-1721.	6.5	37
332	Integration of protein motions with molecular networks reveals different mechanisms for permanent and transient interactions. Protein Science, 2011, 20, 1745-1754.	3.1	37
333	Regulatory element copy number differences shape primate expression profiles. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12656-12661.	3.3	37
334	Using Ethereum blockchain to store and query pharmacogenomics data via smart contracts. BMC Medical Genomics, 2020, 13, 74.	0.7	37
335	STARRPeaker: uniform processing and accurate identification of STARR-seq active regions. Genome Biology, 2020, 21, 298.	3.8	36
336	Stroke and Circulating Extracellular RNAs. Stroke, 2017, 48, 828-834.	1.0	35
337	Binding geometry of α-helices that recognize DNA. Proteins: Structure, Function and Bioinformatics, 1995, 23, 525-535.	1.5	33
338	Structural genomics analysis: Characteristics of atypical, common, and horizontally transferred folds. Proteins: Structure, Function and Bioinformatics, 2002, 47, 126-141.	1.5	33
339	Rapid Evolution by Positive Darwinian Selection in T-Cell Antigen CD4 in Primates. Journal of Molecular Evolution, 2008, 66, 446-456.	0.8	33
340	MSB: A mean-shift-based approach for the analysis of structural variation in the genome. Genome Research, 2009, 19, 106-117.	2.4	33
341	Annual Research Review: The promise of stem cell research for neuropsychiatric disorders. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2011, 52, 504-516.	3.1	33
342	High-order neural networks and kernel methods for peptide-MHC binding prediction. Bioinformatics, 2015, 31, 3600-3607.	1.8	33

#	Article	IF	CITATIONS
343	Measuring Shifts in Function and Evolutionary Opportunity Using Variability Profiles: A Case Study of the Globins. Journal of Molecular Evolution, 2000, 51, 223-233.	0.8	32
344	Network Analysis as a Grand Unifier in Biomedical Data Science. Annual Review of Biomedical Data Science, 2018, 1, 153-180.	2.8	32
345	Global Survey of Human T Leukemic Cells by Integrating Proteomics and Transcriptomics Profiling. Molecular and Cellular Proteomics, 2007, 6, 1343-1353.	2.5	31
346	Integrated analysis of experimental data sets reveals many novel promoters in 1% of the human genome. Genome Research, 2007, 17, 720-731.	2.4	31
347	Genomic Anonymity: Have We Already Lost It?. American Journal of Bioethics, 2008, 8, 71-74.	0.5	31
348	LPFC: An internet library of protein family core structures. Protein Science, 1997, 6, 246-248.	3.1	30
349	Identification and characterization of over 100 mitochondrial ribosomal protein pseudogenes in the human genomeâ~†. Genomics, 2003, 81, 468-480.	1.3	30
350	Getting Started in Text Mining: Part Two. PLoS Computational Biology, 2009, 5, e1000411.	1.5	30
351	Discordant Expression of Circulating microRNA from Cellular and Extracellular Sources. PLoS ONE, 2016, 11, e0153691.	1.1	30
352	Landscape and variation of novel retroduplications in 26 human populations. PLoS Computational Biology, 2017, 13, e1005567.	1.5	30
353	Analysis of sensitive information leakage in functional genomics signal profiles through genomic deletions. Nature Communications, 2018, 9, 2453.	5.8	30
354	Encoding human serine phosphopeptides in bacteria for proteome-wide identification of phosphorylation-dependent interactions. Nature Biotechnology, 2018, 36, 638-644.	9.4	30
355	What is the Natural Boundary of a Protein in Solution?. Journal of Molecular Biology, 1993, 230, 641-650.	2.0	29
356	RigidFinder: A fast and sensitive method to detect rigid blocks in large macromolecular complexes. Proteins: Structure, Function and Bioinformatics, 2010, 78, 309-324.	1.5	29
357	Closure of the NCBI SRA and implications for the long-term future of genomics data storage. Genome Biology, 2011, 12, 402.	3.8	29
358	Gene inactivation and its implications for annotation in the era of personal genomics. Genes and Development, 2011, 25, 1-10.	2.7	29
359	An Integrative Genomic Approach to Uncover Molecular Mechanisms of Prokaryotic Traits. PLoS Computational Biology, 2006, 2, e159.	1.5	28
360	Using sigLASSO to optimize cancer mutation signatures jointly with sampling likelihood. Nature Communications, 2020, 11, 3575.	5.8	28

#	Article	IF	CITATIONS
361	Data Sanitization to Reduce Private Information Leakage from Functional Genomics. Cell, 2020, 183, 905-917.e16.	13.5	28
362	The Development of a Practical Artificial Intelligence Tool for Diagnosing and Evaluating Autism Spectrum Disorder: Multicenter Study. JMIR Medical Informatics, 2020, 8, e15767.	1.3	28
363	An approach for determining and measuring network hierarchy applied to comparing the phosphorylome and the regulome. Genome Biology, 2015, 16, 63.	3.8	27
364	Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples. Nature Communications, 2020, 11, 4748.	5.8	27
365	An NMR study on the DNA-binding SPKK motif and a model for its interaction with DNA. Protein Engineering, Design and Selection, 1993, 6, 565-574.	1.0	26
366	Segmental duplications in the human genome reveal details of pseudogene formation. Nucleic Acids Research, 2010, 38, 6997-7007.	6.5	26
367	Leveraging protein dynamics to identify cancer mutational hotspots using 3D structures. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18962-18970.	3.3	26
368	Integrated Prediction of the Helical Membrane Protein Interactome in Yeast. Journal of Molecular Biology, 2006, 357, 339-349.	2.0	25
369	Assessing the performance of different high-density tiling microarray strategies for mapping transcribed regions of the human genome. Genome Research, 2007, 17, 886-897.	2.4	25
370	The DART classification of unannotated transcription within the ENCODE regions: Associating transcription with known and novel loci. Genome Research, 2007, 17, 732-745.	2.4	25
371	Identification of Genes Critical for Resistance to Infection by West Nile Virus Using RNA-Seq Analysis. Viruses, 2013, 5, 1664-1681.	1.5	25
372	Reply to Brunet and Doolittle: Both selected effect and causal role elements can influence human biology and disease. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3366.	3.3	25
373	Analysis of Nuclear Receptor Pseudogenes in Vertebrates: How the Silent Tell Their Stories. Molecular Biology and Evolution, 2007, 25, 131-143.	3.5	24
374	Manually structured digital abstracts: A scaffold for automatic text mining. FEBS Letters, 2008, 582, 1170-1170.	1.3	24
375	Artificial Transmembrane Oncoproteins Smaller than the Bovine Papillomavirus E5 Protein Redefine Sequence Requirements for Activation of the Platelet-Derived Growth Factor Î ² Receptor. Journal of Virology, 2009, 83, 9773-9785.	1.5	24
376	Extending gene ontology in the context of extracellular RNA and vesicle communication. Journal of Biomedical Semantics, 2016, 7, 19.	0.9	24
377	Novel approaches for bioinformatic analysis of salivary RNA sequencing data for development. Bioinformatics, 2018, 34, 1-8.	1.8	24
378	TeXP: Deconvolving the effects of pervasive and autonomous transcription of transposable elements. PLoS Computational Biology, 2019, 15, e1007293.	1.5	24

Mark B Gerstein

#	Article	IF	CITATIONS
379	SVFX: a machine learning framework to quantify the pathogenicity of structural variants. Genome Biology, 2020, 21, 274.	3.8	24
380	Identification and correction of spurious spatial correlations in microarray data. BioTechniques, 2003, 35, 42-48.	0.8	23
381	[15] Extrapolating Traditional DNA Microarray Statistics to Tiling and Protein Microarray Technologies. Methods in Enzymology, 2006, 411, 282-311.	0.4	23
382	Child Development and Structural Variation in the Human Genome. Child Development, 2013, 84, 34-48.	1.7	23
383	Isoform-Level Interpretation of High-Throughput Proteomics Data Enabled by Deep Integration with RNA-seq. Journal of Proteome Research, 2018, 17, 3431-3444.	1.8	23
384	Transcription factor binding site identification in yeast: a comparison of high-density oligonucleotide and PCR-based microarray platforms. Functional and Integrative Genomics, 2007, 7, 335-345.	1.4	22
385	A new tool for technical standardization of the Ki67 immunohistochemical assay. Modern Pathology, 2021, 34, 1261-1270.	2.9	22
386	Analysis of Combinatorial Regulation: Scaling of Partnerships between Regulators with the Number of Governed Targets. PLoS Computational Biology, 2010, 6, e1000755.	1.5	21
387	A â€~PolyORFomic' Analysis of Prokaryote Genomes Using Disabled-homology Filtering Reveals Conserved But Undiscovered Short ORFs. Journal of Molecular Biology, 2003, 333, 885-892.	2.0	20
388	Cellular Superspreaders: An Epidemiological Perspective on HIV Infection inside the Body. PLoS Pathogens, 2014, 10, e1004092.	2.1	20
389	Thermostability of membrane protein helix-helix interaction elucidated by statistical analysis. FEBS Letters, 2002, 532, 231-236.	1.3	19
390	Digging Deep for Ancient Relics: A Survey of Protein Motifs in the Intergenic Sequences of Four Eukaryotic Genomes. Journal of Molecular Biology, 2002, 323, 811-822.	2.0	18
391	Loregic: A Method to Characterize the Cooperative Logic of Regulatory Factors. PLoS Computational Biology, 2015, 11, e1004132.	1.5	18
392	Estimation of the carrier frequency of fumarate hydratase alterations and implications for kidney cancer risk in hereditary leiomyomatosis and renal cancer. Cancer, 2020, 126, 3657-3666.	2.0	18
393	Establishing a Global Standard for Wearable Devices in Sport and Fitness: Perspectives from the New England Chapter of the American College of Sports Medicine Members. Current Sports Medicine Reports, 2020, 19, 45-49.	0.5	18
394	Estimating growth patterns and driver effects in tumor evolution from individual samples. Nature Communications, 2020, 11, 732.	5.8	18
395	A Pilot Study of Transcription Unit Analysis in Rice Using Oligonucleotide Tiling-path Microarray. Plant Molecular Biology, 2005, 59, 137-149.	2.0	17
396	Genomic analysis of insertion behavior and target specificity of mini-Tn7 and Tn3 transposons in Saccharomyces cerevisiae. Nucleic Acids Research, 2006, 34, e57-e57.	6.5	17

#	Article	IF	CITATIONS
397	An interdepartmental Ph.D. program in computational biology and bioinformatics: The Yale perspective. Journal of Biomedical Informatics, 2007, 40, 73-79.	2.5	17
398	Novel insights through the integration of structural and functional genomics data with protein networks. Journal of Structural Biology, 2012, 179, 320-326.	1.3	17
399	Transcriptional activity and strain-specific history of mouse pseudogenes. Nature Communications, 2020, 11, 3695.	5.8	17
400	Functional genomics data: privacy risk assessment and technological mitigation. Nature Reviews Genetics, 2022, 23, 245-258.	7.7	17
401	SNPs on human chromosomes 21 and 22 – analysis in terms of protein features and pseudogenes. Pharmacogenomics, 2002, 3, 393-402.	0.6	16
402	Open Access: Taking Full Advantage of the Content. PLoS Computational Biology, 2008, 4, e1000037.	1.5	16
403	Epigenome-based splicing prediction using a recurrent neural network. PLoS Computational Biology, 2020, 16, e1008006.	1.5	16
404	Fast and Scalable Private Genotype Imputation Using Machine Learning and Partially Homomorphic Encryption. IEEE Access, 2021, 9, 93097-93110.	2.6	16
405	Using blockchain to log genome dataset access: efficient storage and query. BMC Medical Genomics, 2020, 13, 78.	0.7	15
406	Reconstructing genetic networks in yeast. Nature Biotechnology, 2003, 21, 1295-1297.	9.4	14
407	Tools and Databases to Analyze Protein Flexibility; Approaches to Mapping Implied Features onto Sequences. Methods in Enzymology, 2003, 374, 544-584.	0.4	14
408	Integrating Sequencing Technologies in Personal Genomics: Optimal Low Cost Reconstruction of Structural Variants. PLoS Computational Biology, 2009, 5, e1000432.	1.5	14
409	Origins and characterization of variants shared between databases of somatic and germline human mutations. BMC Bioinformatics, 2020, 21, 227.	1.2	14
410	Methods for displaying macromolecular structural uncertainty: Application to the globins. Journal of Molecular Graphics, 1995, 13, 142-152.	1.7	13
411	Localized structural frustration for evaluating the impact of sequence variants. Nucleic Acids Research, 2013, 44, 10062-10073.	6.5	13
412	Cross-Disciplinary Network Comparison: Matchmaking between Hairballs. Cell Systems, 2016, 2, 147-157.	2.9	13
413	Positional artifacts in microarrays: experimental verification and construction of COP, an automated detection tool. Nucleic Acids Research, 2006, 35, e8-e8.	6.5	12
414	Leveraging long read sequencing from a single individual to provide a comprehensive resource for benchmarking variant calling methods. Scientific Reports, 2015, 5, 14493.	1.6	12

#	Article	IF	CITATIONS
415	Establishing a Global Standard for Wearable Devices in Sport and Exercise Medicine: Perspectives from Academic and Industry Stakeholders. Sports Medicine, 2021, 51, 2237-2250.	3.1	12
416	A universal legal framework as a prerequisite for database interoperability. Nature Biotechnology, 2003, 21, 979-982.	9.4	11
417	Fast Optimal Genome Tiling with Applications to Microarray Design and Homology Search. Journal of Computational Biology, 2004, 11, 766-785.	0.8	11
418	Privacy-preserving genotype imputation with fully homomorphic encryption. Cell Systems, 2022, 13, 173-182.e3.	2.9	11
419	Repeated tertiary fold of RNA polymerase II and implications for DNA binding 1 1Edited by A. Klug. Journal of Molecular Biology, 1998, 280, 317-322.	2.0	10
420	Relating protein conformational changes to packing efficiency and disorder. Protein Science, 2009, 18, 1230-1240.	3.1	10
421	Temporal Dynamics of Collaborative Networks in Large Scientific Consortia. Trends in Genetics, 2016, 32, 251-253.	2.9	10
422	Less is more in the hunt for driver mutations. Nature, 2017, 547, 40-41.	13.7	10
423	Structuring supplemental materials in support of reproducibility. Genome Biology, 2017, 18, 64.	3.8	10
424	Chemistry Nobel Rich in Structure. Science, 2007, 315, 40-41.	6.0	9
425	An approach to comparing tiling array and high throughput sequencing technologies for genomic transcript mapping. BMC Research Notes, 2009, 2, 150.	0.6	9
426	Structured digital tables on the Semantic Web: toward a structured digital literature. Molecular Systems Biology, 2010, 6, 403.	3.2	9
427	MOAT: efficient detection of highly mutated regions with the Mutations Overburdening Annotations Tool. Bioinformatics, 2018, 34, 1031-1033.	1.8	9
428	RADAR: annotation and prioritization of variants in the post-transcriptional regulome of RNA-binding proteins. Genome Biology, 2020, 21, 151.	3.8	9
429	SCAN-ATAC-Sim: a scalable and efficient method for simulating single-cell ATAC-seq data from bulk-tissue experiments. Bioinformatics, 2021, 37, 1756-1758.	1.8	9
430	Storing and analyzing a genome on a blockchain. Genome Biology, 2022, 23, .	3.8	9
431	A method using active-site sequence conservation to find functional shifts in protein families: Application to the enzymes of central metabolism, leading to the identification of an anomalous isocitrate dehydrogenase in pathogens. Proteins: Structure, Function and Bioinformatics, 2004, 55, 455-463.	1.5	8
432	To mock or not: a comprehensive comparison of mock IP and DNA input for ChIP-seq. Nucleic Acids Research, 2021, 49, e17-e17.	6.5	8

#	Article	IF	CITATIONS
433	Whole-genome sequencing of phenotypically distinct inflammatory breast cancers reveals similar genomic alterations to non-inflammatory breast cancers. Genome Medicine, 2021, 13, 70.	3.6	8
434	DECODE: a <i>De</i> ep-learning framework for <i>Co</i> n <i>de</i> nsing enhancers and refining boundaries with large-scale functional assays. Bioinformatics, 2021, 37, i280-i288.	1.8	8
435	Bayesian structural time series for biomedical sensor data: A flexible modeling framework for evaluating interventions. PLoS Computational Biology, 2021, 17, e1009303.	1.5	8
436	The stability of thermophilic proteins: a study based on comprehensive genome comparison. Functional and Integrative Genomics, 2000, 1, 76-88.	1.4	7
437	Multiple-Swarm Ensembles: Improving the Predictive Power and Robustness of Predictive Models and Its Use in Computational Biology. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2018, 15, 926-933.	1.9	7
438	Pollen-derived RNAs Are Found in the Human Circulation. IScience, 2019, 19, 916-926.	1.9	7
439	Differences in evolutionary accessibility determine which equally effective regulatory motif evolves to generate pulses. Genetics, 2021, 219, .	1.2	7
440	IQSeq: Integrated Isoform Quantification Analysis Based on Next-Generation Sequencing. PLoS ONE, 2012, 7, e29175.	1.1	7
441	Network propagation-based prioritization of long tail genes in 17 cancer types. Genome Biology, 2021, 22, 287.	3.8	7
442	Solution structure of the DNA binding octapeptide repeat of the K10 gene product. Protein Engineering, Design and Selection, 1994, 7, 461-470.	1.0	6
443	Reads meet rotamers: structural biology in the age of deep sequencing. Current Opinion in Structural Biology, 2015, 35, 125-134.	2.6	6
444	Understanding genome structural variations. Oncotarget, 2016, 7, 7370-7371.	0.8	6
445	Text mining systems biology: Turning the microscope back on the observer. Current Opinion in Systems Biology, 2018, 11, 117-122.	1.3	6
446	Building a Hybrid Physical-Statistical Classifier for Predicting the Effect of Variants Related to Protein-Drug Interactions. Structure, 2019, 27, 1469-1481.e3.	1.6	6
447	Recovering genotypes and phenotypes using allele-specific genes. Genome Biology, 2021, 22, 263.	3.8	6
448	DREISS: Using State-Space Models to Infer the Dynamics of Gene Expression Driven by External and Internal Regulatory Networks. PLoS Computational Biology, 2016, 12, e1005146.	1.5	6
449	Using FunSeq2 for Coding and Non oding Variant Annotation and Prioritization. Current Protocols in Bioinformatics, 2017, 57, 15.11.1-15.11.17.	25.8	5
450	Approaches for integrating heterogeneous RNA-seq data reveal cross-talk between microbes and genes in asthmatic patients. Genome Biology, 2020, 21, 150.	3.8	5

#	Article	IF	CITATIONS
451	DiNeR: a Differential graphical model for analysis of co-regulation Network Rewiring. BMC Bioinformatics, 2020, 21, 281.	1.2	5
452	Genomics Confounds Gene Classification. American Scientist, 2008, 96, 466.	0.1	5
453	Cross-platform transcriptomic profiling of the response to recombinant human erythropoietin. Scientific Reports, 2021, 11, 21705.	1.6	5
454	Forest Fire Clustering for single-cell sequencing combines iterative label propagation with parallelized Monte Carlo simulations. Nature Communications, 2022, 13, .	5.8	5
455	Purcell's role in the discovery of nuclear magnetic resonance: Contingency versus inevitability. American Journal of Physics, 1994, 62, 596-601.	0.3	4
456	RNAi Development. PLoS Computational Biology, 2007, 3, e80.	1.5	4
457	Shaping the nebulous enhancer in the era of high-throughput assays and genome editing. Briefings in Bioinformatics, 2020, 21, 836-850.	3.2	4
458	Molecular medicine tumor board: whole-genome sequencing to inform on personalized medicine for a man with advanced prostate cancer. Prostate Cancer and Prostatic Diseases, 2021, 24, 786-793.	2.0	4
459	STK11/LKB1 Loss of Function Is Associated with Global DNA Hypomethylation and <i>S</i> -Adenosyl-Methionine Depletion in Human Lung Adenocarcinoma. Cancer Research, 2021, 81, 4194-4204.	0.4	4
460	Nodal modulator (NOMO) is required to sustain endoplasmic reticulum morphology. Journal of Biological Chemistry, 2021, 297, 100937.	1.6	4
461	Annotation of the Human Genome. Science, 2000, 288, 1590b-1590.	6.0	4
462	Forging links in an electronic paper chain. Nature, 1999, 398, 20-20.	13.7	3
463	A High Productivity/Low Maintenance Approach to High-performance Computation for Biomedicine: Four Case Studies. Journal of the American Medical Informatics Association: JAMIA, 2004, 12, 90-98.	2.2	3
464	Protein Interaction Prediction by Integrating Genomic Features and Protein Interaction Network Analysis. , 2005, , 61-81.		3
465	iTAR: a web server for identifying target genes of transcription factors using ChIP-seq or ChIP-chip data. BMC Genomics, 2016, 17, 632.	1.2	3
466	FANCY: fast estimation of privacy risk in functional genomics data. Bioinformatics, 2021, 36, 5145-5150.	1.8	3
467	Transmembrane Protein Oxygen Content and Compartmentalization of Cells. PLoS ONE, 2008, 3, e2726.	1.1	3
468	Calculating populations of subcellular compartments using density matrix formalism. International Journal of Quantum Chemistry, 2001, 85, 693-696.	1.0	2

#	Article	IF	CITATIONS
469	An analysis of the present system of scientific publishing: what's wrong and where to go from here. Interdisciplinary Science Reviews, 2003, 28, 293-302.	1.0	2
470	Proposed social and technological solutions to issues of data privacy in personal genomics. , 2014, , .		2
471	Intensification: A Resource for Amplifying Population-Genetic Signals with Protein Repeats. Journal of Molecular Biology, 2017, 429, 435-445.	2.0	2
472	The corrected gene proximity map for analyzing the 3D genome organization using Hi-C data. BMC Bioinformatics, 2020, 21, 222.	1.2	2
473	Cancer Relevance of Human Genes. Journal of the National Cancer Institute, 2022, 114, 988-995.	3.0	2
474	Computer security in academia—a potential roadblock to distributed annotation of the human genome. Nature Biotechnology, 2004, 22, 771-772.	9.4	1
475	Tools needed to navigate landscape of the genome. Nature, 2006, 440, 740-740.	13.7	1
476	When Scientific Data Become Legal Evidence. Science, 2009, 324, 335-336.	6.0	1
477	Systematic control of protein interactions for systems biology. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20279-20280.	3.3	1
478	GRAM: A GeneRAlized Model to predict the molecular effect of a non-coding variant in a cell-type specific manner. PLoS Genetics, 2019, 15, e1007860.	1.5	1
479	NIMBus: a negative binomial regression based Integrative Method for mutation Burden Analysis. BMC Bioinformatics, 2020, 21, 474.	1.2	1
480	Latent-space embedding of expression data identifies gene signatures from sputum samples of asthmatic patients. BMC Bioinformatics, 2020, 21, 457.	1.2	1
481	Cyclic and multilevel causation in evolutionary processes. Biology and Philosophy, 2020, 35, 1.	0.7	1
482	Gene Tracer: a smart, interactive, voice-controlled Alexa skill For gene information retrieval and browsing, mutation annotation and network visualization. Bioinformatics, 2021, 37, 2998-3000.	1.8	1
483	Gene names can confound most-searched listings. Nature, 2018, 553, 405-405.	13.7	1
484	Building the future of biocomputing. Nature, 1999, 399, 101-101.	13.7	0
485	Editorial. Nucleic Acids Research, 2004, 33, D3-D4.	6.5	0
486	Design Issues in Implementing a Portable Sample Tracking and Analysis Research Support (STARS) System for PCR Based Microarray Research. , 2006, , .		0

Mark B Gerstein

#	Article	IF	CITATIONS
487	Dynamic and static analysis of transcriptional regulatory networks in a hierarchical context. , 2010, ,		0
488	Hierarchical analysis of regulatory networks and cross-disciplinary comparison with the Linux call graph. , 2010, , .		0
489	Illuminating the Genome's Dark Matter. Cell, 2015, 163, 1047-1048.	13.5	0
490	Who Owns Your DNA?. Cell, 2016, 165, 257-258.	13.5	0
491	Human History, Human Genomes. Cell, 2018, 174, 1043-1044.	13.5	0
492	Comparing Technological Development and Biological Evolution from a Network Perspective. Cell Systems, 2020, 10, 219-222.	2.9	0
493	Genomic Distribution of Transcripts and DNA Associated Proteins in One Percent of the Genome of Erythroid and Myeloid Cells Blood, 2006, 108, 4201-4201.	0.6	0
494	The lasting legacy of John von Neumann The Man from the Future: The Visionary Life of John von Neumann <i>Ananyo Bhattacharya</i> Norton, 2022. 368 pp Science, 2022, 375, 983-983.	6.0	0