
Paul J Yarowsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7059074/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Exosomes Isolated From Platelet-Rich Plasma and Mesenchymal Stem Cells Promote Recovery of Function After Muscle Injury. American Journal of Sports Medicine, 2020, 48, 2277-2286.	4.2	48
2	Magnetic Enhancement of Stem Cell–Targeted Delivery into the Brain Following MR-Guided Focused Ultrasound for Opening the Blood–Brain Barrier. Cell Transplantation, 2017, 26, 1235-1246.	2.5	52
3	Cell-Based Therapy in TBI: Magnetic Retention of Neural Stem Cells in Vivo. Cell Transplantation, 2016, 25, 1085-1099.	2.5	32
4	SIRB, sans iron oxide rhodamine B, a novel crossâ€linked dextran nanoparticle, labels human neuroprogenitor and SH‣Y5Y neuroblastoma cells and serves as a USPIO cell labeling control. Contrast Media and Molecular Imaging, 2016, 11, 222-228.	0.8	7
5	Site-Specific Targeting of Platelet-Rich Plasma via Superparamagnetic Nanoparticles. Orthopaedic Journal of Sports Medicine, 2015, 3, 232596711456618.	1.7	7
6	Coupling Diffusion Imaging with Histological and Gene Expression Analysis to Examine the Dynamics of Cortical Areas across the Fetal Period of Human Brain Development. Cerebral Cortex, 2013, 23, 2620-2631.	2.9	65
7	Defective thymic progenitor development and mature <scp>T</scp> â€cell responses in a mouse model for <scp>D</scp> own syndrome. Immunology, 2013, 139, 447-458.	4.4	23
8	Human neural progenitor cells retain viability, phenotype, proliferation, and lineage differentiation when labeled with a novel iron oxide nanoparticle, Molday ION Rhodamine B. International Journal of Nanomedicine, 2013, 8, 4593.	6.7	27
9	Detecting ALS and Parkinson's disease in rats through locomotion analysis. Network Modeling Analysis in Health Informatics and Bioinformatics, 2012, 1, 63-68.	2.1	5
10	Detection of Gait Abnormalities in Sprague-Dawley Rats after 6-hydroxydopamine Injection and the Experiment Efficient Design. , 2011, , .		0
11	Defective Hematopoietic Stem Cell and Lymphoid Progenitor Development in the Ts65Dn Mouse Model of Down Syndrome: Potential Role of Oxidative Stress. Antioxidants and Redox Signaling, 2011, 15, 2083-2094.	5.4	24
12	Environmental neurotoxinâ€induced progressive model of parkinsonism in rats. Annals of Neurology, 2010, 68, 70-80.	5.3	62
13	Locomotion analysis of Sprague–Dawley rats before and after injecting 6-OHDA. Behavioural Brain Research, 2010, 210, 131-133.	2.2	8
14	Sleep alterations in an environmental neurotoxin-induced model of parkinsonism. Experimental Neurology, 2010, 226, 84-89.	4.1	26
15	Anatomical Characterization of Human Fetal Brain Development with Diffusion Tensor Magnetic Resonance Imaging. Journal of Neuroscience, 2009, 29, 4263-4273.	3.6	308
16	Quantification of Brain Maturation and Growth Patterns in C57BL/6J Mice via Computational Neuroanatomy of Diffusion Tensor Images. Cerebral Cortex, 2009, 19, 675-687.	2.9	89
17	Measuring early pre-symptomatic changes in locomotion of SOD1-G93A rats—A rodent model of amyotrophic lateral sclerosis. Journal of Neuroscience Methods, 2009, 176, 254-262.	2.5	14
18	Growthâ€compromised HSVâ€2 vector ΔRR protects from Nâ€methylâ€Dâ€aspartateâ€induced neuronal degeneration through redundant activation of the MEK/ERK and PI3â€K/Akt survival pathways, either one of which overrides apoptotic cascades. Journal of Neuroscience Research, 2008, 86, 378-391.	2.9	10

PAUL J YAROWSKY

#	Article	IF	CITATIONS
19	Data mining in a behavioral test detects early symptoms in a model of amyotrophic lateral sclerosis Behavioral Neuroscience, 2008, 122, 777-787.	1.2	9
20	The HSV-2 protein ICP10PK prevents neuronal apoptosis and loss of function in an in vivo model of neurodegeneration associated with glutamate excitotoxicity. Experimental Neurology, 2007, 203, 381-393.	4.1	30
21	Corrigendum to "Intranasal Administration of the Growth-compromised HSV-2 Vector ΔRR Prevents Kainate-induced Seizures and Neuronal Loss in Rats and Mice― Molecular Therapy, 2007, 15, 1734.	8.2	0
22	White and gray matter development in human fetal, newborn and pediatric brains. NeuroImage, 2006, 33, 27-38.	4.2	346
23	Fluoxetine rescues deficient neurogenesis in hippocampus of the Ts65Dn mouse model for Down syndrome. Experimental Neurology, 2006, 200, 256-261.	4.1	130
24	Characterization of Mouse Brain and Its Development using Diffusion Tensor Imaging and Computational Techniques. , 2006, 2006, 2252-5.		18
25	Intranasal Administration of the Growth-Compromised HSV-2 Vector ΔRR Prevents Kainate-Induced Seizures and Neuronal Loss in Rats and Mice. Molecular Therapy, 2006, 13, 870-881.	8.2	45
26	Characterization of Mouse Brain and Its Development using Diffusion Tensor Imaging and Computational Techniques. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, , .	0.5	1
27	Spatiotemporal maturation patterns of murine brain quantified by diffusion tensor MRI and deformation-based morphometry. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 6978-6983.	7.1	82
28	Magnetic Resonance Diffusion Tensor Microimaging Reveals a Role for Bcl-x in Brain Development and Homeostasis. Journal of Neuroscience, 2005, 25, 1881-1888.	3.6	39
29	Mapping postnatal mouse brain development with diffusion tensor microimaging. NeuroImage, 2005, 26, 1042-1051.	4.2	81
30	Concurrent Generation of Subplate and Cortical Plate Neurons in Developing Trisomy 16 Mouse Cortex. Developmental Neuroscience, 2004, 26, 255-265.	2.0	19
31	Detection of amyloid plaques in mouse models of Alzheimer's disease by magnetic resonance imaging. Magnetic Resonance in Medicine, 2004, 51, 452-457.	3.0	83
32	Altered astrocyte calcium homeostasis and proliferation in theTs65Dn mouse, a model of Down syndrome. Journal of Neuroscience Research, 2003, 73, 89-94.	2.9	19
33	Three-dimensional anatomical characterization of the developing mouse brain by diffusion tensor microimaging. Neurolmage, 2003, 20, 1639-1648.	4.2	153
34	Expression of Herpes Simplex Virus Type 2 Protein ICP10 PK Rescues Neurons from Apoptosis Due to Serum Deprivation or Genetic Defects. Experimental Neurology, 2002, 174, 118-122.	4.1	21
35	Diffusion tensor imaging of the developing mouse brain. Magnetic Resonance in Medicine, 2001, 46, 18-23.	3.0	237
36	Role of Founder Cell Deficit and Delayed Neuronogenesis in Microencephaly of the Trisomy 16 Mouse. Journal of Neuroscience, 2000, 20, 4156-4164.	3.6	82

PAUL J YAROWSKY

#	Article	IF	CITATIONS
37	Impaired spatial working and reference memory in segmental trisomy (Ts65Dn) mice. Behavioural Brain Research, 1998, 90, 199-201.	2.2	95
38	Abnormal calcium homeostasis in astrocytes from the trisomy 16 mouse. , 1997, 19, 352-358.		32
39	Characterization of sensorimotor performance, reproductive and aggressive behaviors in segmental trisomic 16 (Ts65Dn) mice. Physiology and Behavior, 1996, 60, 1159-1164.	2.1	54
40	Spatial memory deficits in segmental trisomic Ts65Dn mice. Behavioural Brain Research, 1996, 82, 85-92.	2.2	117
41	Consequences of Trisomy 16Âfor Mouse Brain Development: Corticogenesis in a Model of Down Syndrome. Journal of Neuroscience, 1996, 16, 6175-6182.	3.6	58
42	Expression of glial antigens in mouse astrocytes: Species differences and regulation in vitro. Journal of Neuroscience Research, 1996, 46, 305-315.	2.9	16
43	Modulation of two functionally distinct Ca2+ stores in astrocytes: Role of the plasmalemmal Na/Ca exchanger. Glia, 1996, 16, 296-305.	4.9	77
44	Modulation of two functionally distinct Ca2 stores in astrocytes: Role of the plasmalemmal Na/Ca exchanger. Glia, 1996, 16, 296-305.	4.9	6
45	Physiological Roles of the Sodium-Calcium Exchanger in Nerve and Muscle. Annals of the New York Academy of Sciences, 1991, 639, 254-274.	3.8	127
46	Ultrastructural metabolic activity following quick-freezing and freeze-substitution in tetrahydrofuran in the superior cervical ganglion. Journal of Neurocytology, 1989, 18, 121-135.	1.5	1
47	Metabolic activation of specific postsynaptic elements in superior cervical ganglion by antidromic stimulation of external carotid nerve. Brain Research, 1985, 334, 330-334.	2.2	13