List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7058930/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Visualization of learning-induced synaptic plasticity in output neurons of the Drosophila mushroom body γ-lobe. Scientific Reports, 2022, 12, .	1.6	10
2	Unc13A and Unc13B contribute to the decoding of distinct sensory information in Drosophila. Nature Communications, 2021, 12, 1932.	5.8	16
3	Circuit reorganization in the Drosophila mushroom body calyx accompanies memory consolidation. Cell Reports, 2021, 34, 108871.	2.9	28
4	The anterior paired lateral neuron normalizes odour-evoked activity in the Drosophila mushroom body calyx. ELife, 2021, 10, .	2.8	11
5	Aralar Sequesters GABA into Hyperactive Mitochondria, Causing Social Behavior Deficits. Cell, 2020, 180, 1178-1197.e20.	13.5	62
6	Stochastic and Arbitrarily Generated Input Patterns to the Mushroom Bodies Can Serve as Conditioned Stimuli in Drosophila. Frontiers in Physiology, 2020, 11, 53.	1.3	9
7	Visualization of a Distributed Synaptic Memory Code in the Drosophila Brain. Neuron, 2020, 106, 963-976.e4.	3.8	40
8	Odor-Induced Multi-Level Inhibitory Maps in Drosophila. ENeuro, 2020, 7, ENEURO.0213-19.2019.	0.9	6
9	Visualization of naive and learned odor representations using in vivo calcium imaging and immunohistochemical bouton mapping of single Drosophila mushroom body neurons. STAR Protocols, 2020, 1, 100210.	0.5	0
10	In Vivo Optical Calcium Imaging of Learning-Induced Synaptic Plasticity in Drosophila melanogaster . Journal of Visualized Experiments, 2019, , .	0.2	6
11	Slow presynaptic mechanisms that mediate adaptation in the olfactory pathway of Drosophila. ELife, 2019, 8, .	2.8	33
12	Neural Control of Startle-Induced Locomotion by the Mushroom Bodies and Associated Neurons in Drosophila. Frontiers in Systems Neuroscience, 2018, 12, 6.	1.2	55
13	Developmental Coordination during Olfactory Circuit Remodeling in Drosophila. Neuron, 2018, 99, 1204-1215.e5.	3.8	33
14	Visualization of Synapses and Synaptic Plasticity in the Drosophila Brain. , 2017, , 309-319.		0
15	SIFamide Translates Hunger Signals into Appetitive and Feeding Behavior in Drosophila. Cell Reports, 2017, 20, 464-478.	2.9	78
16	Localization of a Memory Trace: Aversive Associative Olfactory Learning and Short-Term Memory in Drosophila. , 2017, , 475-482.		2
17	Spermidine Suppresses Age-Associated Memory Impairment by Preventing Adverse Increase of Presynaptic Active Zone Size and Release. PLoS Biology, 2016, 14, e1002563.	2.6	82
18	Optogenetics in Drosophila Neuroscience. Methods in Molecular Biology, 2016, 1408, 167-175.	0.4	28

#	Article	IF	CITATIONS
19	Optical Dissection of Experience-Dependent Pre- and Postsynaptic Plasticity in the Drosophila Brain. Cell Reports, 2015, 10, 2083-2095.	2.9	61
20	Identified Serotonin-Releasing Neurons Induce Behavioral Quiescence and Suppress Mating in <i>Drosophila</i> . Journal of Neuroscience, 2015, 35, 12792-12812.	1.7	79
21	Induction of aversive learning through thermogenetic activation of Kenyon cell ensembles in Drosophila. Frontiers in Behavioral Neuroscience, 2014, 8, 174.	1.0	24
22	Synthetic retinal analogues modify the spectral and kinetic characteristics of microbial rhodopsin optogenetic tools. Nature Communications, 2014, 5, 5810.	5.8	42
23	Channelrhodopsin-2–XXL, a powerful optogenetic tool for low-light applications. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13972-13977.	3.3	182
24	Differential Associative Training Enhances Olfactory Acuity in <i>Drosophila melanogaster</i> . Journal of Neuroscience, 2014, 34, 1819-1837.	1.7	37
25	Optical Calcium Imaging Using DNA-Encoded Fluorescence Sensors in Transgenic Fruit Flies, Drosophila melanogaster. Methods in Molecular Biology, 2014, 1071, 195-206.	0.4	4
26	Drep-2 is a novel synaptic protein important for learning and memory. ELife, 2014, 3, .	2.8	39
27	Localization of the Contacts Between Kenyon Cells and Aminergic Neurons in the <i>Drosophila melanogaster</i> Brain Using SplitGFP Reconstitution. Journal of Comparative Neurology, 2013, 521, 3992-4026.	0.9	64
28	Heterogeneous connectivity can positively and negatively modulate the correlation between neural representations. BMC Neuroscience, 2013, 14, .	0.8	0
29	Restoring polyamines protects from age-induced memory impairment in an autophagy-dependent manner. Nature Neuroscience, 2013, 16, 1453-1460.	7.1	283
30	A Single Dopamine Pathway Underlies Progressive Locomotor Deficits in a Drosophila Model of Parkinson Disease. Cell Reports, 2013, 5, 952-960.	2.9	128
31	Principal component analysis of odor coding at the level of thirdâ€order olfactory neurons in <i><scp>D</scp>rosophila</i> . Genes To Cells, 2013, 18, 1070-1081.	0.5	8
32	Mushroom body miscellanea: transgenic Drosophila strains expressing anatomical and physiological sensor proteins in Kenyon cells. Frontiers in Neural Circuits, 2013, 7, 147.	1.4	27
33	An information theoretic model of information processing in the Drosophila olfactory system: the role of inhibitory neurons for system efficiency. Frontiers in Computational Neuroscience, 2013, 7, 183.	1.2	5
34	Monitoring Neural Activity with Genetically Encoded Ca2+ Indicators. , 2013, , 103-114.		1
35	Optophysiological Approaches to Learning and Memory in Drosophila melanogaster. Handbook of Behavioral Neuroscience, 2013, , 59-68.	0.7	2
36	Optical calcium imaging in the nervous system of Drosophila melanogaster. Biochimica Et Biophysica Acta - General Subjects, 2012, 1820, 1169-1178.	1.1	30

#	Article	IF	CITATIONS
37	Steroid-induced microRNA <i>let-7</i> acts as a spatio-temporal code for neuronal cell fate in the developing <i>Drosophila</i> brain. EMBO Journal, 2012, 31, 4511-4523.	3.5	82
38	Avoidance of Heat and Attraction to Optogenetically Induced Sugar Sensation as Operant Behavior in AdultDrosophila. Journal of Neurogenetics, 2012, 26, 298-305.	0.6	13
39	Calcium Imaging of Neural Activity in the Olfactory System of Drosophila. Neuromethods, 2012, , 43-70.	0.2	21
40	The Smell of Blue Light: A New Approach toward Understanding an Olfactory Neuronal Network. Frontiers in Neuroscience, 2011, 5, 72.	1.4	16
41	A Combined Perceptual, Physico-Chemical, and Imaging Approach to â€~Odour-Distances' Suggests a Categorizing Function of the Drosophila Antennal Lobe. PLoS ONE, 2011, 6, e24300.	1.1	32
42	Presynapses in Kenyon Cell Dendrites in the Mushroom Body Calyx of Drosophila. Journal of Neuroscience, 2011, 31, 9696-9707.	1.7	83
43	Optogenetic Approaches in Neuroscience. Current Biology, 2010, 20, R897-R903.	1.8	48
44	Transcuticular optical imaging of stimulus-evoked neural activities in the Drosophila peripheral nervous system. Nature Protocols, 2010, 5, 1229-1235.	5.5	18
45	Optogenetically induced olfactory stimulation in Drosophila larvae reveales the neuronal basis of odor-aversion behavior. Frontiers in Behavioral Neuroscience, 2010, 4, 27.	1.0	66
46	From Synapses to Behavior: Neurobiology inDrosophila. Journal of Neurogenetics, 2010, 24, 91-92.	0.6	1
47	The neural basis of Drosophila gravity-sensing and hearing. Nature, 2009, 458, 165-171.	13.7	347
48	Optophysiological approaches to learning and memory in Drosophila. Neuroscience Research, 2009, 65, S16.	1.0	0
49	Neuroethology: A Neuronal Self-Defense Mechanism in Fly Larvae. Current Biology, 2008, 18, R116-R117.	1.8	4
50	The development of motor coordination in <i>Drosophila</i> embryos. Development (Cambridge), 2008, 135, 3707-3717.	1.2	79
51	Salt Processing in Larval Drosophila: Choice, Feeding, and Learning Shift from Appetitive to Aversive in a Concentration-Dependent Way. Chemical Senses, 2008, 33, 685-692.	1.1	68
52	Transgenic fruit-flies expressing a FRET-based sensor for in vivo imaging of cAMP dynamics. Cellular Signalling, 2007, 19, 2296-2303.	1.7	34
53	Olfaction and olfactory learning in Drosophila: recent progress. Current Opinion in Neurobiology, 2007, 17, 720-726.	2.0	112
54	Light Activation of an Innate Olfactory Avoidance Response in Drosophila. Current Biology, 2007, 17, 905-908.	1.8	127

#	Article	IF	CITATIONS
55	Light-Induced Activation of Distinct Modulatory Neurons Triggers Appetitive or Aversive Learning in Drosophila Larvae. Current Biology, 2006, 16, 1741-1747.	1.8	557
56	Punishment Prediction by Dopaminergic Neurons in Drosophila. Current Biology, 2005, 15, 1953-1960.	1.8	308
57	Are dendrites in Drosophila homologous to vertebrate dendrites?. Developmental Biology, 2005, 288, 126-138.	0.9	87
58	Procaine impairs learning and memory consolidation in the honeybee. Brain Research, 2003, 977, 124-127.	1.1	12
59	In Vivo Calcium Imaging of Brain Activity in Drosophila by Transgenic Cameleon Expression. Science Signaling, 2003, 2003, pl6-pl6.	1.6	47
60	Genetically Expressed Cameleon in Drosophila melanogaster Is Used to Visualize Olfactory Information in Projection Neurons. Current Biology, 2002, 12, 1877-1884.	1.8	218
61	Transgenic flies expressing the fluorescence calcium sensor cameleon 2.1 under UAS control. Genesis, 2002, 34, 95-98.	0.8	47
62	Cloning of a catalytic subunit of cAMP-dependent protein kinase from the honeybee (Apis mellifera) and its localization in the brain. Insect Molecular Biology, 2001, 10, 173-181.	1.0	23
63	Reversible Downregulation of Protein Kinase A during Olfactory Learning Using Antisense Technique Impairs Long-Term Memory Formation in the Honeybee, <i>Apis mellifera</i> . Journal of Neuroscience, 1999, 19, 10125-10134.	1.7	101
64	Pharmacological dissociation between the reinforcing, sensitizing, and response-releasing functions of reward in honeybee classical conditioning Behavioral Neuroscience, 1999, 113, 744-754.	0.6	109
65	Visualization of a Distributed Synaptic Memory Code in the <i>Drosophila Brain</i> . SSRN Electronic	0.4	1