Kirill L Yakkonen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7058758/publications.pdf

Version: 2024-02-01

1040056 940533 16 332 9 16 citations h-index g-index papers 16 16 16 467 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Zinc deficiency in cucumber plants can be alleviated by fullerenol. Journal of Plant Nutrition, 2023, 46, 1504-1518.	1.9	1
2	Fullerenol can Ameliorate Iron Deficiency in Cucumber Grown Hydroponically. Journal of Plant Growth Regulation, 2021, 40, 1017-1031.	5.1	19
3	Fullerenol changes metabolite responses differently depending on the iron status of cucumber plants. PLoS ONE, 2021, 16, e0251396.	2.5	7
4	Fullerenol increases effectiveness of foliar iron fertilization in iron-deficient cucumber. PLoS ONE, 2020, 15, e0232765.	2.5	18
5	Calcium Carbonate Reduces the Effectiveness of Soil-Added Monosilicic Acid in Cucumber Plants. Journal of Soil Science and Plant Nutrition, 2019, 19, 660-670.	3.4	8
6	Silicon ameliorates iron deficiency of cucumber in a pH-dependent manner. Journal of Plant Physiology, 2018, 231, 364-373.	3.5	12
7	Content of iron, zinc and manganese in grains of Triticum aestivum, Secale cereale, Hordeum vulgare and Avena sativa cultivars registered in Russia. Genetic Resources and Crop Evolution, 2017, 64, 1955-1961.	1.6	25
8	Aluminum tolerance and micronutrient accumulation in cereal species contrasting in iron efficiency. Journal of Plant Nutrition, 2017, 40, 1152-1164.	1.9	2
9	Interactions between aluminium, iron and silicon in Cucumber sativus L. grown under acidic conditions. Journal of Plant Physiology, 2017, 218, 100-108.	3.5	23
10	Xylem sap mineral analyses as a rapid method for estimation plant-availability of Fe, Zn and Mn in carbonate soils: a case study in cucumber. Journal of Soil Science and Plant Nutrition, 2017, , 0-0.	3.4	4
11	Earthworms can increase mobility and bioavailability of silicon in soil. Soil Biology and Biochemistry, 2016, 99, 47-53.	8.8	29
12	Can earthworms alleviate nutrient disorders of plants subjected to calcium carbonate excess?. Applied Soil Ecology, 2016, 98, 20-29.	4.3	9
13	Organic Acids Induce Tolerance to Zinc- and Copper-Exposed Fungi Under Various Growth Conditions. Current Microbiology, 2015, 70, 520-527.	2.2	54
14	Contrasting effect of silicon on iron, zinc and manganese status and accumulation of metal-mobilizing compounds in micronutrient-deficient cucumber. Plant Physiology and Biochemistry, 2014, 74, 205-211.	5.8	96
15	The earthworm (Aporrectodea caliginosa) primes the release of mobile and available micronutrients in soil. Pedobiologia, 2012, 55, 93-99.	1.2	18
16	Mechanisms Underlying Iron and Zinc Transport to Axis Organs in Grain During Early Seedling Development of Maize. Journal of Plant Nutrition, 2005, 27, 1525-1541.	1.9	7