
Naofumi Uesaka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7058641/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phospholipase C Î ² 3 is Required for Climbing Fiber Synapse Elimination in Aldolase C-positive Compartments of the Developing Mouse Cerebellum. Neuroscience, 2021, 462, 36-43.	2.3	4
2	Combining electrophysiology and optogenetics for functional screening of pyramidal neurons in the mouse prefrontal cortex. STAR Protocols, 2021, 2, 100469.	1.2	1
3	Autism spectrum disorder-like behavior caused by reduced excitatory synaptic transmission in pyramidal neurons of mouse prefrontal cortex. Nature Communications, 2020, 11, 5140.	12.8	82
4	Tonic GABAergic Inhibition Is Essential for Nerve Injury-Induced Afferent Remodeling in the Somatosensory Thalamus and Ectopic Sensations. Cell Reports, 2020, 31, 107797.	6.4	7
5	Setd1a Insufficiency in Mice Attenuates Excitatory Synaptic Function and Recapitulates Schizophrenia-Related Behavioral Abnormalities. Cell Reports, 2020, 32, 108126.	6.4	44
6	AUTS2 Governs Cerebellar Development, Purkinje Cell Maturation, Motor Function and Social Communication. IScience, 2020, 23, 101820.	4.1	24
7	Comprehensive analysis of a novel mouse model of the 22q11.2 deletion syndrome: a model with the most common 3.0-Mb deletion at the human 22q11.2 locus. Translational Psychiatry, 2020, 10, 35.	4.8	30
8	Retrograde Signaling from Progranulin to Sort1 Counteracts Synapse Elimination in the Developing Cerebellum. Neuron, 2018, 97, 796-805.e5.	8.1	30
9	Presynaptic Mechanisms Mediating Retrograde Semaphorin Signals for Climbing Fiber Synapse Elimination During Postnatal Cerebellar Development. Cerebellum, 2018, 17, 17-22.	2.5	16
10	Multiple Phases of Climbing Fiber Synapse Elimination in the Developing Cerebellum. Cerebellum, 2018, 17, 722-734.	2.5	60
11	Retrograde BDNF to TrkB signaling promotes synapse elimination in the developing cerebellum. Nature Communications, 2017, 8, 195.	12.8	91
12	The Metabotropic Glutamate Receptor Subtype 1 Mediates Experience-Dependent Maintenance of Mature Synaptic Connectivity in the Visual Thalamus. Neuron, 2016, 91, 1097-1109.	8.1	30
13	Consensus Paper: Cerebellar Development. Cerebellum, 2016, 15, 789-828.	2.5	337
14	Retrograde Signaling for Climbing Fiber Synapse Elimination. Cerebellum, 2015, 14, 4-7.	2.5	8
15	Retrograde semaphorin signaling regulates synapse elimination in the developing mouse brain. Science, 2014, 344, 1020-1023.	12.6	115
16	Arc/Arg3.1 Is a Postsynaptic Mediator of Activity-Dependent Synapse Elimination in the Developing Cerebellum. Neuron, 2013, 78, 1024-1035.	8.1	96
17	Organotypic Coculture Preparation for the Study of Developmental Synapse Elimination in Mammalian Brain. Journal of Neuroscience, 2012, 32, 11657-11670.	3.6	26
18	Synapse type-independent degradation of the endocannabinoid 2-arachidonoylglycerol after retrograde synaptic suppression. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12195-12200.	7.1	44

ΝΑΟΓΙΜΙ ΠΕΣΑΚΑ

#	Article	IF	CITATIONS
19	Synapse "non-specific―degradation of the endocannabinoid 2-arachidonoylglycerol mediating depolarization-induced retrograde synaptic suppression in cerebellar Purkinje cells. Neuroscience Research, 2011, 71, e56.	1.9	0
20	Roles of Purkinje cell activity in climbing fiber synapse elimination in an organotypic coculture preparation of the cerebellum and medulla oblongata. Neuroscience Research, 2011, 71, e93.	1.9	0
21	Nucleocytoplasmic translocation of HDAC9 regulates gene expression and dendritic growth in developing cortical neurons. European Journal of Neuroscience, 2010, 31, 1521-1532.	2.6	75
22	Role of pre- and postsynaptic activity in thalamocortical axon branching. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7562-7567.	7.1	48
23	Effective modification of neural activity in CNS organotypic cultures. Neuroscience Research, 2010, 68, e135.	1.9	0
24	Single Cell Electroporation Method for Mammalian CNS Neurons in Organotypic Slice Cultures. , 2009, , 169-177.		1
25	Single cell electroporation method for axon tracing in cultured slices. Development Growth and Differentiation, 2008, 50, 475-477.	1.5	13
26	Role of RhoA in Activity-Dependent Cortical Axon Branching. Journal of Neuroscience, 2008, 28, 9117-9121.	3.6	34
27	Interplay between Laminar Specificity and Activity-Dependent Mechanisms of Thalamocortical Axon Branching. Journal of Neuroscience, 2007, 27, 5215-5223.	3.6	57
28	Molecular Mechanisms of Thalamocortical Axon Targeting. Novartis Foundation Symposium, 2007, 288, 199-211.	1.1	5
29	The Role of Neural Activity in Cortical Axon Branching. Neuroscientist, 2006, 12, 102-106.	3.5	34
30	Activity Dependence of Cortical Axon Branch Formation: A Morphological and Electrophysiological Study Using Organotypic Slice Cultures. Journal of Neuroscience, 2005, 25, 1-9.	3.6	113