
UroÅ; PetroviÄ•

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7058136/publications.pdf Version: 2024-02-01

Προδ: Ρετρονιά

#	Article	IF	CITATIONS
1	Yeasts from temperate forests. Yeast, 2022, 39, 4-24.	0.8	18
2	Domestication reprogrammed the budding yeast life cycle. Nature Ecology and Evolution, 2022, 6, 448-460.	3.4	32
3	Identification of novel genes involved in neutral lipid storage by quantitative trait loci analysis of Saccharomyces cerevisiae. BMC Genomics, 2021, 22, 110.	1.2	3
4	Engineering of Saccharomyces cerevisiae for the accumulation of high amounts of triacylglycerol. Microbial Cell Factories, 2021, 20, 147.	1.9	12
5	Yeast lipids. Yeast, 2020, 37, 3-3.	0.8	0
6	Transcriptomics unravels the adaptive molecular mechanisms of Brettanomyces bruxellensis under SO2 stress in wine condition. Food Microbiology, 2020, 90, 103483.	2.1	10
7	Democratized image analytics by visual programming through integration of deep models and small-scale machine learning. Nature Communications, 2019, 10, 4551.	5.8	44
8	Ethanolamine ameliorates mitochondrial dysfunction in cardiolipin-deficient yeast cells. Journal of Biological Chemistry, 2018, 293, 10870-10883.	1.6	19
9	Tum1 is involved in the metabolism of sterol esters in Saccharomyces cerevisiae. BMC Microbiology, 2017, 17, 181.	1.3	3
10	Scan-o-matic: High-Resolution Microbial Phenomics at a Massive Scale. G3: Genes, Genomes, Genetics, 2016, 6, 3003-3014.	0.8	69
11	Polygenic analysis and targeted improvement of the complex trait of high acetic acid tolerance in the yeast Saccharomyces cerevisiae. Biotechnology for Biofuels, 2016, 9, 5.	6.2	83
12	Yeast as a cell factory: current state and perspectives. Microbial Cell Factories, 2015, 14, 94.	1.9	87
13	Next-generation biofuels: a new challenge for yeast. Yeast, 2015, 32, 583-593.	0.8	30
14	Genome-Wide Localization Study of Yeast Pex11 Identifies Peroxisome–Mitochondria Interactions through the ERMES Complex. Journal of Molecular Biology, 2015, 427, 2072-2087.	2.0	131
15	Yeast Saccharomyces cerevisiae adiponectin receptor homolog Izh2 is involved in the regulation of zinc, phospholipid and pH homeostasis. Metallomics, 2015, 7, 1338-1351.	1.0	8
16	Human Stefin B Role in Cell's Response to Misfolded Proteins and Autophagy. PLoS ONE, 2014, 9, e102500.	1.1	15
17	Determination of toxicity of neonicotinoids on the genome level using chemogenomics in yeast. Chemosphere, 2014, 104, 91-96.	4.2	8
18	Molecular Mechanisms in Yeast Carbon Metabolism: Lipid Metabolism and Lipidomics. , 2014, , 169-215.		6

Molecular Mechanisms in Yeast Carbon Metabolism: Lipid Metabolism and Lipidomics. , 2014, , 169-215. 18

UroÅi PetroviÄ•

#	Article	IF	CITATIONS
19	Neurotoxic phospholipase A ₂ toxicity model. Communicative and Integrative Biology, 2013, 6, e23600.	0.6	11
20	A Neurotoxic Phospholipase A2 Impairs Yeast Amphiphysin Activity and Reduces Endocytosis. PLoS ONE, 2012, 7, e40931.	1.1	11
21	Yeast as a model eukaryote in toxinology: A functional genomics approach to studying the molecular basis of action of pharmacologically active molecules. Toxicon, 2012, 60, 558-571.	0.8	9
22	Inference of the Molecular Mechanism of Action from Genetic Interaction and Gene Expression Data. OMICS A Journal of Integrative Biology, 2010, 14, 357-367.	1.0	3
23	Imaging-Based Live Cell Yeast Screen Identifies Novel Factors Involved in Peroxisome Assembly. Journal of Proteome Research, 2009, 8, 20-27.	1.8	33
24	Rule-based Clustering for Gene Promoter Structure Discovery. Methods of Information in Medicine, 2009, 48, 229-235.	0.7	3
25	HMG-CoA reductase is regulated by environmental salinity and its activity is essential for halotolerance in halophilic fungi. Studies in Mycology, 2008, 61, 61-66.	4.5	13
26	Inferring gene regulatory networks by integrating static and dynamic data. International Journal of Medical Informatics, 2007, 76, S462-S475.	1.6	7
27	Role of oxidative stress in the extremely salt-tolerant yeastHortaea werneckii. FEMS Yeast Research, 2006, 6, 816-822.	1.1	39
28	Ammodytoxin, a secretory phospholipase A2, inhibits G2 cell-cycle arrest in the yeast Saccharomyces cerevisiae. Biochemical Journal, 2005, 391, 383-388.	1.7	16
29	TA-clustering: Cluster analysis of gene expression profiles through Temporal Abstractions. International Journal of Medical Informatics, 2005, 74, 505-517.	1.6	22
30	Microarray data mining with visual programming. Bioinformatics, 2005, 21, 396-398.	1.8	131
31	VizRank: finding informative data projections in functional genomics by machine learning. Bioinformatics, 2005, 21, 413-414.	1.8	58
32	Ammodytoxin, a neurotoxic secreted phospholipase A2, can act in the cytosol of the nerve cell. Biochemical and Biophysical Research Communications, 2004, 324, 981-985.	1.0	37
33	Fungi in Salterns. , 2004, , 103-113.		26
34	Cellular responses to environmental salinity in the halophilic black yeast Hortaea werneckii. Molecular Microbiology, 2002, 45, 665-672.	1.2	107