Frédéric Ledoux

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/705784/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Polycyclic aromatic hydrocarbon derivatives in airborne particulate matter: sources, analysis and toxicity. Environmental Chemistry Letters, 2018, 16, 439-475.	16.2	141
2	Ambient particulate matter (PM2.5): Physicochemical characterization and metabolic activation of the organic fraction in human lung epithelial cells (A549). Environmental Research, 2007, 105, 212-223.	7.5	138
3	Activation of different pathways of apoptosis by air pollution particulate matter (PM2.5) in human epithelial lung cells (L132) in culture. Toxicology, 2006, 225, 12-24.	4.2	137
4	Dunkerque City air pollution particulate matter-induced cytotoxicity, oxidative stress and inflammation in human epithelial lung cells (L132) in culture. Toxicology in Vitro, 2006, 20, 519-528.	2.4	116
5	Chemical profile identification of fugitive and confined particle emissions from an integrated iron and steelmaking plant. Journal of Hazardous Materials, 2013, 250-251, 246-255.	12.4	113
6	Role of nuclear factor-kappa B activation in the adverse effects induced by air pollution particulate matter (PM2.5) in human epithelial lung cells (L132) in culture. Journal of Applied Toxicology, 2007, 27, 284-290.	2.8	84
7	Contributions of local and regional anthropogenic sources of metals in PM2.5 at an urban site in northern France. Chemosphere, 2017, 181, 713-724.	8.2	81
8	Pro-inflammatory effects of Dunkerque city air pollution particulate matter 2.5 in human epithelial lung cells (L132) in culture. Journal of Applied Toxicology, 2005, 25, 166-175.	2.8	79
9	In vitro evaluation of organic extractable matter from ambient PM2.5 using human bronchial epithelial BEAS-2B cells: Cytotoxicity, oxidative stress, pro-inflammatory response, genotoxicity, and cell cycle deregulation. Environmental Research, 2019, 171, 510-522.	7.5	74
10	Genotoxic and epigenotoxic effects of fine particulate matter from rural and urban sites in Lebanon on human bronchial epithelial cells. Environmental Research, 2015, 136, 352-362.	7.5	68
11	Fine and ultrafine atmospheric particulate matter at a multi-influenced urban site: Physicochemical characterization, mutagenicity and cytotoxicity. Environmental Pollution, 2017, 221, 130-140.	7.5	65
12	Influence of ship emissions on NOx, SO2, O3 and PM concentrations in a North-Sea harbor in France. Journal of Environmental Sciences, 2018, 71, 56-66.	6.1	56
13	Characterisation and seasonal variations of particles in the atmosphere of rural, urban and industrial areas: Organic compounds. Journal of Environmental Sciences, 2016, 44, 45-56.	6.1	44
14	PM2.5 source apportionment in a French urban coastal site under steelworks emission influences using constrained non-negative matrix factorization receptor model. Journal of Environmental Sciences, 2016, 40, 114-128.	6.1	42
15	Aerosol formation yields from the reaction of catechol with ozone. Atmospheric Environment, 2009, 43, 2360-2365.	4.1	41
16	Chemical characterization of fine and ultrafine PM, direct and indirect genotoxicity of PM and their organic extracts on pulmonary cells. Journal of Environmental Sciences, 2018, 71, 168-178.	6.1	35
17	Cellular response and extracellular vesicles characterization of human macrophages exposed to fine atmospheric particulate matter. Environmental Pollution, 2019, 254, 112933.	7.5	34
18	Characterization of iron and manganese species in atmospheric aerosols from anthropogenic sources. Atmospheric Research, 2006, 82, 622-632.	4.1	32

Frédéric Ledoux

#	Article	IF	CITATIONS
19	Secondary organic aerosol formation from the gas phase reaction of hydroxyl radicals with m-, o- and p-cresol. Atmospheric Environment, 2008, 42, 3035-3045.	4.1	32
20	Comparison between ultrafine and fine particulate matter collected in Lebanon: Chemical characterization, inÂvitro cytotoxic effects and metabolizing enzymes gene expression in human bronchial epithelial cells. Environmental Pollution, 2015, 205, 250-260.	7.5	32
21	Traffic-related air pollution. A pilot exposure assessment in Beirut, Lebanon. Chemosphere, 2014, 96, 122-128.	8.2	31
22	PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) and nitrated PAHs (NPAHs) in rural and suburban areas in Shandong and Henan Provinces during the 2016 Chinese New Year's holiday. Environmental Pollution, 2019, 250, 782-791.	7.5	30
23	A summer and winter apportionment of particulate matter at urban and rural areas in northern France. Atmospheric Research, 2006, 82, 633-642.	4.1	28
24	Toxicity of fine and quasi-ultrafine particles: Focus on the effects of organic extractable and non-extractable matter fractions. Chemosphere, 2020, 243, 125440.	8.2	28
25	Assessment of the PM2.5 oxidative potential in a coastal industrial city in Northern France: Relationships with chemical composition, local emissions and long range sources. Science of the Total Environment, 2020, 748, 141448.	8.0	27
26	PM2.5 characterization of primary and secondary organic aerosols in two urban-industrial areas in the East Mediterranean. Journal of Environmental Sciences, 2021, 101, 98-116.	6.1	26
27	Human health risk assessment for PAHs, phthalates, elements, PCDD/Fs, and DL-PCBs in PM2.5 and for NMVOCs in two East-Mediterranean urban sites under industrial influence. Atmospheric Pollution Research, 2022, 13, 101261.	3.8	26
28	Chemical characteristics of PM 2.5–0.3 and PM 0.3 and consequence of a dust storm episode at an urban site in Lebanon. Atmospheric Research, 2016, 180, 274-286.	4.1	25
29	Atmospheric fine particulate matter and epithelial mesenchymal transition in pulmonary cells: state of the art and critical review of the <i>in vitro</i> studies. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 2020, 23, 293-318.	6.5	23
30	Toxicological appraisal of the chemical fractions of ambient fine (PM2.5-0.3) and quasi-ultrafine (PM0.3) particles in human bronchial epithelial BEAS-2B cells. Environmental Pollution, 2020, 263, 114620.	7.5	22
31	Essential oil components decrease pulmonary and hepatic cells inflammation induced by air pollution particulate matter. Environmental Chemistry Letters, 2016, 14, 345-351.	16.2	18
32	Characterization of manganese-bearing particles in the vicinities of a manganese alloy plant. Chemosphere, 2017, 175, 411-424.	8.2	17
33	Physicochemical characteristics, mutagenicity and genotoxicity of airborne particles under industrial and rural influences in Northern Lebanon. Environmental Science and Pollution Research, 2017, 24, 18782-18797.	5.3	14
34	Chemical profiles of PM2.5 emitted from various anthropogenic sources of the Eastern Mediterranean: Cooking, wood burning, and diesel generators. Environmental Research, 2022, 211, 113032.	7.5	14
35	EPR investigations of Mn2+, Fe3+ ions and carbonaceous radicals in atmospheric particulate aerosols during their transport over the eastern coast of the English Channel. Atmospheric Environment, 2002, 36, 939-947.	4.1	12
36	EPR investigation of iron in size segregated atmospheric aerosols collected at Dunkerque, Northern France. Atmospheric Environment, 2004, 38, 1201-1210.	4.1	12

Frédéric Ledoux

#	Article	IF	CITATIONS
37	Methods for the assessment of health risk induced by contaminants in atmospheric particulate matter: a review. Environmental Chemistry Letters, 2022, 20, 3289-3311.	16.2	7
38	Informed Weighted Non-Negative Matrix Factorization Using $\hat{I}\pm\hat{I}^2$ -Divergence Applied to Source Apportionment. Entropy, 2019, 21, 253.	2.2	6
39	Atmospheric aerosols behaviour at an industrial area in Northern France. International Journal of Environment and Pollution, 2009, 39, 286.	0.2	4
40	Une version pondérée de la factorisation matricielle non négative pour l'identification de sources de particules atmosphériques. Application au littoral de la mer du Nord. Journal Europeen Des Systemes Automatises, 2010, 44, 547-566.	0.4	4
41	Inorganic Chemical Composition of Atmospheric Particulate Matter around Industrial Sites in Northern Lebanon. Advanced Materials Research, 0, 324, 477-480.	0.3	2
42	A prospective pilot study of the Tâ€lymphocyte response to fine particulate matter exposure. Journal of Applied Toxicology, 2020, 40, 619-630.	2.8	2
43	Estimating airborne heavy metal concentrations in Dunkerque (northern France). Arabian Journal of Geosciences, 2016, 9, 1.	1.3	1
44	The Use of a Non Negative Matrix Factorization Method Combined to PM2.5 Chemical Data for a Source Apportionment Study in Different Environments. Springer Proceedings in Complexity, 2014, , 79-84.	0.3	0