
Michael A Calderwood

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/705782/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Proteome-Scale Map of the Human Interactome Network. Cell, 2014, 159, 1212-1226.	13.5	1,199
2	A reference map of the human binary protein interactome. Nature, 2020, 580, 402-408.	13.7	724
3	Proto-genes and de novo gene birth. Nature, 2012, 487, 370-374.	13.7	555
4	Widespread Macromolecular Interaction Perturbations in Human Genetic Disorders. Cell, 2015, 161, 647-660.	13.5	482
5	Widespread Expansion of Protein Interaction Capabilities by Alternative Splicing. Cell, 2016, 164, 805-817.	13.5	479
6	Interpreting cancer genomes using systematic host network perturbations by tumour virus proteins. Nature, 2012, 487, 491-495.	13.7	349
7	Epstein–Barr virus and virus human protein interaction maps. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7606-7611.	3.3	348
8	Network-based prediction of protein interactions. Nature Communications, 2019, 10, 1240.	5.8	293
9	Protein interaction network of alternatively spliced isoforms from brain links genetic risk factors for autism. Nature Communications, 2014, 5, 3650.	5.8	131
10	APID database: redefining protein–protein interaction experimental evidences and binary interactomes. Database: the Journal of Biological Databases and Curation, 2019, 2019, .	1.4	113
11	Viral Perturbations of Host Networks Reflect Disease Etiology. PLoS Computational Biology, 2012, 8, e1002531.	1.5	102
12	Pooledâ€matrix protein interaction screens using Barcode Fusion Genetics. Molecular Systems Biology, 2016, 12, 863.	3.2	102
13	Identification of FAM111A as an SV40 Host Range Restriction and Adenovirus Helper Factor. PLoS Pathogens, 2012, 8, e1002949.	2.1	58
14	Maximizing binary interactome mapping with a minimal number of assays. Nature Communications, 2019, 10, 3907.	5.8	57
15	Generation and precise modification of a herpesvirus saimiri bacterial artificial chromosome demonstrates that the terminal repeats are required for both virus production and episomal persistence. Journal of General Virology, 2003, 84, 3393-3403.	1.3	49
16	An interâ€species protein–protein interaction network across vast evolutionary distance. Molecular Systems Biology, 2016, 12, 865.	3.2	42
17	The Epstein-Barr Virus LF2 Protein Inhibits Viral Replication. Journal of Virology, 2008, 82, 8509-8519.	1.5	40
18	EBV nuclear antigen EBNALP dismisses transcription repressors NCoR and RBPJ from enhancers and EBNA2 increases NCoR-deficient RBPJ DNA binding. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7808-7813.	3.3	40

#	Article	IF	CITATIONS
19	The EBNA3 Family of Epstein-Barr Virus Nuclear Proteins Associates with the USP46/USP12 Deubiquitination Complexes to Regulate Lymphoblastoid Cell Line Growth. PLoS Pathogens, 2015, 11, e1004822.	2.1	40
20	Analysis of Gene Expression in a Human Cell Line Stably Transduced with Herpesvirus Saimiri. Journal of Virology, 2000, 74, 7331-7337.	1.5	36
21	Genome-Wide Analysis of Epstein-Barr Virus Rta DNA Binding. Journal of Virology, 2012, 86, 5151-5164.	1.5	34
22	The Herpesvirus Saimiri Open Reading Frame 73 Gene Product Interacts with the Cellular Protein p32. Journal of Virology, 2002, 76, 11612-11622.	1.5	33
23	The herpesvirus saimiri ORF73 gene product interacts with host-cell mitotic chromosomes and self-associates via its C terminus. Journal of General Virology, 2004, 85, 147-153.	1.3	33
24	The carboxy terminus of the herpesvirus saimiri ORF 57 gene contains domains that are required for transactivation and transrepression. Journal of General Virology, 2000, 81, 2253-2265.	1.3	33
25	Epstein-Barr Virus Nuclear Protein 3C Domains Necessary for Lymphoblastoid Cell Growth: Interaction with RBP-Jκ Regulates TCL1. Journal of Virology, 2009, 83, 12368-12377.	1.5	29
26	Epstein-Barr Virus LF2 Protein Regulates Viral Replication by Altering Rta Subcellular Localization. Journal of Virology, 2010, 84, 9920-9931.	1.5	28
27	Characterization of the herpesvirus saimiri ORF73 gene product. Journal of General Virology, 2000, 81, 2653-2658.	1.3	27
28	Open reading frame 73 is required for herpesvirus saimiri A11-S4 episomal persistence. Journal of General Virology, 2005, 86, 2703-2708.	1.3	25
29	Specific oncolytic activity of herpesvirus saimiri in pancreatic cancer cells. British Journal of Cancer, 2000, 83, 329-332.	2.9	22
30	ORF Capture-Seq as a versatile method for targeted identification of full-length isoforms. Nature Communications, 2020, 11, 2326.	5.8	19
31	The HTLV-1 viral oncoproteins Tax and HBZ reprogram the cellular mRNA splicing landscape. PLoS Pathogens, 2021, 17, e1009919.	2.1	19
32	An RS Motif within the Epstein-Barr Virus BLRF2 Tegument Protein Is Phosphorylated by SRPK2 and Is Important for Viral Replication. PLoS ONE, 2013, 8, e53512.	1.1	19
33	Epstein–Barr virus nuclear protein 3C binds to the N-terminal (NTD) and beta trefoil domains (BTD) of RBP/CSL; Only the NTD interaction is essential for lymphoblastoid cell growth. Virology, 2011, 414, 19-25.	1.1	17
34	Development of herpesvirus-based episomally maintained gene delivery vectors. Expert Opinion on Biological Therapy, 2004, 4, 493-505.	1.4	9
35	Interactome Networks. , 2013, , 45-63.		5
36	A systematic approach to identify host targets and rapidly deliver broad-spectrum antivirals. Molecular Therapy, 2022, 30, 1797-1800.	3.7	5

#	Article	IF	CITATIONS
37	Abacavir inhibits but does not cause self-reactivity to HLA-B*57:01-restricted EBV specific T cell receptors. Communications Biology, 2022, 5, 133.	2.0	3
38	OpenPIP: An Open-source Platform for Hosting, Visualizing and Analyzing Protein Interaction Data. Journal of Molecular Biology, 2022, 434, 167603.	2.0	3