Anna K Ström

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7057768/publications.pdf

Version: 2024-02-01

331259 329751 1,451 50 21 37 h-index citations g-index papers 55 55 55 2057 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Impact of Clucose on the Nanostructure and Mechanical Properties of Calcium-Alginate Hydrogels. Gels, 2022, 8, 71.	2.1	7
2	Side chains affect the melt processing and stretchability of arabinoxylan biomass-based thermoplastic films. Chemosphere, 2022, 294, 133618.	4.2	5
3	Effect of physicochemical properties, pre-processing, and extraction on the functionality of wheat bran arabinoxylans in breadmaking – A review. Food Chemistry, 2022, 383, 132584.	4.2	12
4	Modification of xylan via an oxidation–reduction reaction. Carbohydrate Polymers, 2022, 292, 119660.	5.1	16
5	Maximizing the oil content in polysaccharide-based emulsion gels for the development of tissue mimicking phantoms. Carbohydrate Polymers, 2021, 256, 117496.	5.1	12
6	Oxidation Level and Glycidyl Ether Structure Determine Thermal Processability and Thermomechanical Properties of Arabinoxylan-Derived Thermoplastics. ACS Applied Bio Materials, 2021, 4, 3133-3144.	2.3	7
7	Oxidized xylan additive for nanocellulose films – A swelling modifier. International Journal of Biological Macromolecules, 2021, 180, 753-759.	3.6	9
8	The effect of sulfate half-ester groups on cellulose nanocrystal periodate oxidation. Cellulose, 2021, 28, 9633-9644.	2.4	15
9	Fat tissue equivalent phantoms for microwave applications by reinforcing gelatin with nanocellulose. Biomedical Physics and Engineering Express, 2021, 7, 065025.	0.6	3
10	Hydrophobization of arabinoxylan with n-butyl glycidyl ether yields stretchable thermoplastic materials. International Journal of Biological Macromolecules, 2021, 188, 491-500.	3.6	6
11	Recovery of a protein-rich biomass from shrimp (Pandalus borealis) boiling water: A colloidal study. Food Chemistry, 2020, 302, 125299.	4.2	23
12	Understanding nanostructural differences in hydrogels from commercial carrageenans: Combined small angle X-ray scattering and rheological studies. Algal Research, 2020, 47, 101882.	2.4	18
13	Advanced structural characterisation of agar-based hydrogels: Rheological and small angle scattering studies. Carbohydrate Polymers, 2020, 236, 115655.	5.1	38
14	Altered Thermal and Mechanical Properties of Spruce Galactoglucomannan Films Modified with an Etherification Reaction. Biomacromolecules, 2020, 21, 1832-1840.	2.6	18
15	Rheological and structural characterization of carrageenan emulsion gels. Algal Research, 2020, 47, 101873.	2.4	31
16	Dynamic Nanocellulose Networks for Thermoset-like yet Recyclable Plastics with a High Melt Stiffness and Creep Resistance. Biomacromolecules, 2019, 20, 3924-3932.	2.6	13
17	Thermoplastic and Flexible Films from Arabinoxylan. ACS Applied Polymer Materials, 2019, 1, 1443-1450.	2.0	23
18	Hydrogels as a water bolus during hyperthermia treatment. Physics in Medicine and Biology, 2019, 64, 115025.	1.6	17

#	Article	IF	CITATIONS
19	Determination of mechanical and rheological properties of a cell-loaded peptide gel during ECM production. International Journal of Pharmaceutics, 2019, 563, 437-444.	2.6	4
20	Alginate and HM-pectin in sports-drink give rise to intra-gastric gelation <i>in vivo</i> . Food and Function, 2019, 10, 7892-7899.	2.1	17
21	A Multiâ€Component Reaction towards the Development of Highly Modular Hydrogelators. Chemistry - A European Journal, 2018, 24, 8071-8075.	1.7	13
22	Liquid Norbornadiene Photoswitches for Solar Energy Storage. Advanced Energy Materials, 2018, 8, 1703401.	10.2	61
23	Stick–slip motion and controlled filling speed by the geometric design of soft micro-channels. Journal of Colloid and Interface Science, 2018, 524, 139-147.	5.0	5
24	Microcellular foaming of arabinoxylan and PEGylated arabinoxylan with supercritical CO2. Carbohydrate Polymers, 2018, 181, 442-449.	5.1	6
25	Periodate oxidation of xylan-based hemicelluloses and its effect on their thermal properties. Carbohydrate Polymers, 2018, 202, 280-287.	5.1	35
26	Soft Gelatin Films Modified with Cellulose Acetate Phthalate Pseudolatex Dispersionâ€"Structure and Permeability. Polymers, 2018, 10, 981.	2.0	4
27	Rollâ€toâ€Roll Dyed Conducting Silk Yarns: A Versatile Material for Eâ€Textile Devices. Advanced Materials Technologies, 2018, 3, 1800251.	3.0	56
28	High sugar content impacts microstructure, mechanics and release of calcium-alginate gels. Food Hydrocolloids, 2018, 84, 26-33.	5.6	31
29	Dynamics of capillary transport in semi-solid channels. Soft Matter, 2017, 13, 2562-2570.	1.2	17
30	Correlating network structure with functional properties of capillary alginate gels for muscle fiber formation. Food Hydrocolloids, 2017, 72, 210-218.	5.6	31
31	Phase behavior, rheology, and release from liquid crystalline phases containing combinations of glycerol monooleate, glyceryl monooleyl ether, propylene glycol, and water. RSC Advances, 2017, 7, 32966-32973.	1.7	9
32	Impact of solvent quality on the network strength and structure of alginate gels. Carbohydrate Polymers, 2016, 144, 289-296.	5.1	51
33	Interplay between flow and diffusion in capillary alginate hydrogels. Soft Matter, 2016, 12, 3897-3907.	1.2	17
34	Modeling capillary formation in calcium and copper alginate gels. Materials Science and Engineering C, 2016, 58, 442-449.	3.8	18
35	Diffusion of macromolecules in self-assembled cellulose/hemicellulose hydrogels. Soft Matter, 2015, 11, 4002-4010.	1.2	36
36	Preparation and physical properties of hyaluronic acidâ€based cryogels. Journal of Applied Polymer Science, 2015, 132, .	1.3	55

#	Article	IF	CITATIONS
37	Controlling water permeability of composite films of polylactide acid, cellulose, and xyloglucan. Journal of Applied Polymer Science, 2015, 132, .	1.3	8
38	Microstructural, mechanical and mass transport properties of isotropic and capillary alginate gels. Soft Matter, 2014, 10, 357-366.	1.2	52
39	Rheological characterization of acid pectin samples in the absence and presence of monovalent ions. Carbohydrate Polymers, 2014, 113, 336-343.	5.1	76
40	Effect of silencing the two major tomato fruit pectin methylesterase isoforms on cell wall pectin metabolism. Plant Biology, 2013, 15, 1025-1032.	1.8	46
41	Microstructure of polymer hydrogels studied by pulsed field gradient NMR diffusion and TEM methods. Soft Matter, 2011, 7, 5711.	1.2	34
42	Doseâ€Dependent Suppression of Hunger by a Specific Alginate in a Lowâ€Viscosity Drink Formulation. Obesity, 2011, 19, 1171-1176.	1.5	49
43	Odunsi <i>et al</i> . Results for CM3 Cannot Be Extrapolated to Alginates in General. Obesity, 2010, 18, 2069-2069.	1.5	3
44	Electrophoretic Behavior of Copolymeric Galacturonans Including Comments on the Information Content of the Intermolecular Charge Distribution. Biomacromolecules, 2009, 10, 1523-1531.	2.6	21
45	Influence of Pectin Fine Structure on the Mechanical Properties of Calciumâ^'Pectin and Acidâ^'Pectin Gels. Biomacromolecules, 2007, 8, 2668-2674.	2.6	103
46	Resolution of the structural isomers of partially methylesterified oligogalacturonides by polysaccharide analysis using carbohydrate gel electrophoresis. Glycobiology, 2006, 16, 29-35.	1.3	221
47	Capillary electrophoresis of homogeneous pectin fractions. Carbohydrate Polymers, 2005, 60, 467-473.	5.1	11
48	An investigation of pectin methylesterification patterns by two independent methods: capillary electrophoresis and polysaccharide analysis using carbohydrate gel electrophoresis. Carbohydrate Research, 2005, 340, 1193-1199.	1.1	23
49	On the separation, detection and quantification of pectin derived oligosaccharides by capillary electrophoresis. Carbohydrate Research, 2004, 339, 1711-1716.	1.1	31
50	Controlled Calcium Release in the Absence and Presence of an Ion-Binding Polymer. Journal of Physical Chemistry B, 2003, 107, 10995-10999.	1.2	28