Heiko Peisert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7057496/publications.pdf

Version: 2024-02-01

94433 114465 4,790 151 37 63 citations h-index g-index papers 151 151 151 4988 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Full characterization of the interface between the organic semiconductor copper phthalocyanine and gold. Journal of Applied Physics, 2002, 91, 4872-4878.	2.5	224
2	Photodegradation of P3HTâ^'A Systematic Study of Environmental Factors. Chemistry of Materials, 2011, 23, 145-154.	6.7	206
3	Order on disorder: Copper phthalocyanine thin films on technical substrates. Journal of Applied Physics, 2001, 90, 466-469.	2.5	198
4	Electronic structure of the organic semiconductor copper phthalocyanine and K-CuPc studied using photoemission spectroscopy. Physical Review B, 2002, 66, .	3.2	169
5	Fluorination of copper phthalocyanines: Electronic structure and interface properties. Journal of Applied Physics, 2003, 93, 9683-9692.	2.5	156
6	Energy level alignment at organic/metal interfaces: Dipole and ionization potential. Applied Physics Letters, 2002, 81, 2400-2402.	3.3	147
7	Relaxation energies in XPS and XAES of solid sulfur compounds. Journal of Electron Spectroscopy and Related Phenomena, 1994, 68, 321-328.	1.7	143
8	Electronic structure of partially fluorinated copper phthalocyanine (CuPCF4) and its interface to Au(). Surface Science, 2002, 515, 491-498.	1.9	128
9	Photo-oxidation and ozonization of poly(3-hexylthiophene) thin films as studied by UV/VIS and photoelectron spectroscopy. Polymer Degradation and Stability, 2010, 95, 818-825.	5.8	123
10	Electronic properties of interfaces between model organic semiconductors and metals. Physica Status Solidi A, 2004, 201, 1055-1074.	1.7	119
11	Experimental and theoretical investigation of vibrational spectra of copper phthalocyanine: polarized singleâ&crystal Raman spectra, isotope effect and DFT calculations. Journal of Raman Spectroscopy, 2009, 40, 2080-2087.	2.5	110
12	Electronic structure of pristine and intercalatedSc3N@C80metallofullerene. Physical Review B, 2002, 66, .	3.2	78
13	Electronic Structure of Co-Phthalocyanine on Gold Investigated by Photoexcited Electron Spectroscopies: Indication of Co Ionâ^'Metal Interaction. Journal of Physical Chemistry C, 2010, 114, 17638-17643.	3.1	77
14	Reversible and Irreversible Light-Induced p-Doping of P3HT by Oxygen Studied by Photoelectron Spectroscopy (XPS/UPS). Journal of Physical Chemistry C, 2011, 115, 13373-13376.	3.1	76
15	Orientation and electronic properties of phthalocyanines on polycrystalline substrates. Physica Status Solidi (B): Basic Research, 2009, 246, 1529-1545.	1.5	75
16	Electronic Structure of FePc and Interface Properties on Ag(111) and Au(100). Journal of Physical Chemistry C, 2012, 116, 11110-11116.	3.1	75
17	The copper phthalocyanine/Au() interface studied using high resolution electron energy-loss spectroscopy. Surface Science, 2002, 506, 333-338.	1.9	70
18	Band-gap and correlation effects in the organic semiconductorAlq3. Physical Review B, 2001, 65, .	3.2	59

#	Article	IF	Citations
19	Influence of temperature on HSQ electron-beam lithography. Journal of Vacuum Science & Technology B, 2007, 25, 2045-2048.	1.3	58
20	Charge transfer and doping at organic/organic interfaces. Applied Physics Letters, 2003, 83, 3930-3932.	3.3	57
21	Impact of the 3d Electronic States of Cobalt and Manganese Phthalocyanines on the Electronic Structure at the Interface to $Ag(111)$. Journal of Physical Chemistry C, 2011, 115, 21334-21340.	3.1	56
22	The Crucial Role of Confined Residual Additives on the Photostability of P3HT:PCBM Active Layers. Journal of Physical Chemistry C, 2015, 119, 9142-9148.	3.1	56
23	Charge transfer between transition metal phthalocyanines and metal substrates: The role of the transition metal. Journal of Electron Spectroscopy and Related Phenomena, 2015, 204, 49-60.	1.7	53
24	Wavelength-Dependent Pathways of Poly-3-hexylthiophene Photo-Oxidation. Chemistry of Materials, 2012, 24, 2739-2743.	6.7	52
25	Interface properties of organic/indium–tin oxide and organic/GeS(001) studied using photoemission spectroscopy. Journal of Applied Physics, 2000, 88, 1535-1540.	2.5	50
26	Direct observation of interfacial charge transfer from silver to organic semiconductors. Chemical Physics Letters, 2004, 384, 197-202.	2.6	49
27	Growth of zinc phthalocyanine onto ZnS film investigated by synchrotron radiation-excited X-ray photoelectron and near-edge absorption spectroscopy. Surface Science, 2005, 596, 98-107.	1.9	49
28	Mixing of interface dipole and band bending at organic/metal interfaces in the case of exponentially distributed transport states. Journal of Applied Physics, 2003, 93, 6084-6089.	2.5	48
29	Site-Specific Charge-Transfer Screening at Organic/Metal Interfaces. Journal of Physical Chemistry C, 2009, 113, 19244-19250.	3.1	48
30	Buried interfacial layer of highly oriented molecules in copper phthalocyanine thin films on polycrystalline gold. Journal of Chemical Physics, 2007, 126, 174704.	3.0	47
31	Optical Spectroscopy and XRD Study of Molecular Orientation, Polymorphism, and Phase Transitions in Fluorinated Vanadyl Phthalocyanine Thin Films. Journal of Physical Chemistry C, 2013, 117, 7097-7106.	3.1	47
32	Modification of the 3d-Electronic Configuration of Manganese Phthalocyanine at the Interface to Gold. Journal of Physical Chemistry C, 2012, 116, 5121-5127.	3.1	45
33	Molecular Orientation in Polymer Films for Organic Solar Cells Studied by NEXAFS. Journal of Physical Chemistry C, 2012, 116, 4870-4874.	3.1	44
34	Extending the toolbox for gas sensor research: Operando UV/vis diffuse reflectance spectroscopy on SnO2-based gas sensors. Sensors and Actuators B: Chemical, 2016, 224, 256-259.	7.8	44
35	Electronic properties of interfaces between different sexithiophenes and gold. Journal of Applied Physics, 2005, 97, 123712.	2.5	41
36	Strong chemical interaction between indium tin oxide and phthalocyanines. Applied Physics Letters, 2002, 80, 2916-2918.	3.3	40

#	Article	IF	Citations
37	Orientation of substituted phthalocyanines on polycrystalline gold: distinguishing between the first layers and thin films. Chemical Physics Letters, 2005, 403, 1-6.	2.6	38
38	Mixing of Frenkel and charge transfer excitons in quasi-one-dimensional copper phthalocyanine molecular crystals. Physical Review B, 2004, 69, .	3.2	37
39	Interaction between Cobalt Phthalocyanine and Gold Studied by X-ray Absorption and Resonant Photoemission Spectroscopy. Journal of Physical Chemistry Letters, 2010, 1, 3380-3384.	4.6	37
40	Electrochemical adjustment of the work function of a conducting polymer. Chemical Physics Letters, 2004, 385, 140-143.	2.6	35
41	Electronic structure of K-intercalated 8-tris-hydroxyquinoline aluminum studied by photoemission spectroscopy. Physical Review B, 2001, 63, .	3.2	34
42	Enhancement of Radiative Plasmon Decay by Hot Electron Tunneling. ACS Nano, 2015, 9, 8176-8183.	14.6	34
43	Orientation and morphology of chloroaluminum phthalocyanine films grown by vapor deposition: Electrical field-induced molecular alignment. Chemical Physics, 2011, 380, 40-47.	1.9	32
44	Photoemission study of the Si(111)-native SiO2/copper phthalocyanine (CuPc) ultra-thin film interface. Organic Electronics, 2012, 13, 1873-1880.	2.6	32
45	CoPc and CoPcF ₁₆ on gold: Site-specific charge-transfer processes. Beilstein Journal of Nanotechnology, 2014, 5, 524-531.	2.8	32
46	Interface Fermi Level Pinning at Contacts Between PEDOT: PSS and Molecular Organic Semiconductors. ChemPhysChem, 2007, 8, 386-390.	2.1	31
47	Charge Transfer and Polarization Screening at Organic/Metal Interfaces:  Distinguishing between the First Layer and Thin Films. Journal of Physical Chemistry C, 2008, 112, 5703-5706.	3.1	30
48	Effects of temperature on structural and morphological features of CoPc and CoPcF16 thin films. Thin Solid Films, 2010, 518, 7161-7166.	1.8	30
49	Communication: Influence of graphene interlayers on the interaction between cobalt phthalocyanine and Ni(111). Journal of Chemical Physics, 2013, 138, 081101.	3.0	30
50	Influence of Graphene on Charge Transfer between CoPc and Metals: The Role of Graphene–Substrate Coupling. Journal of Physical Chemistry C, 2015, 119, 15240-15247.	3.1	30
51	Sulfurization of InP(001) surfaces studied by X-ray photoelectron and X-ray induced Auger electron spectroscopies (XPS/XAES). Surface Science, 1995, 331-333, 434-440.	1.9	29
52	Electrochemical Variation of the Energy Level of Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate). Journal of Physical Chemistry B, 2004, 108, 17301-17305.	2.6	29
53	Tetra-t-butyl magnesium phthalocyanine on gold: Electronic structure and molecular orientation. Journal of Chemical Physics, 2005, 122, 064710.	3.0	29
54	Molecular orientation of substituted phthalocyanines: Influence of the substrate roughness. Surface Science, 2006, 600, 4024-4029.	1.9	29

#	Article	IF	CITATIONS
55	Thinâ€Film Properties of DNA and RNA Bases: A Combined Experimental and Theoretical Study. ChemPhysChem, 2008, 9, 740-747.	2.1	27
56	Highly ordered phthalocyanine thin films on a technically relevant polymer substrate. Journal of Applied Physics, 2004, 96, 4009-4011.	2.5	26
57	FTIR Study of the Impact of PC[60]BM on the Photodegradation of the Low Band Gap Polymer PCPDTBT under O ₂ Environment. Chemistry of Materials, 2015, 27, 2299-2308.	6.7	26
58	Charge Transfer from Organic Molecules to Molybdenum Disulfide: Influence of the Fluorination of Iron Phthalocyanine. Journal of Physical Chemistry C, 2020, 124, 16990-16999.	3.1	25
59	Ultrathin transition-metal oxide films: Thickness dependence of the electronic structure and local geometry in MnO. Physical Review B, 2007, 75, .	3.2	24
60	Initial molecular orientation of phthalocyanines on oxide substrates. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 2524-2528.	1.8	24
61	Energy Level Alignment of a P3HT/Fullerene Blend during the Initial Steps of Degradation. Journal of Physical Chemistry C, 2013, 117, 4992-4998.	3.1	24
62	Sulfur-modified surface of InP(001): Evidence for sulfur incorporation and surface oxidation. Applied Physics A: Materials Science and Processing, 1997, 65, 543-549.	2.3	23
63	Influence of the alkyl-chains length on the electronic structure and interface properties of 1,4-octasubstituted zinc phthalocyanines on gold. Journal of Applied Physics, 2005, 97, 073715.	2.5	23
64	Molecular organization in the thin films of gallium(III) phthalocyanine chloride and its $\hat{1}\frac{1}{4}$ -(oxo)dimer: Optical spectroscopy and XPS study. Applied Surface Science, 2014, 322, 242-248.	6.1	23
65	A universal route to improving conjugated macromolecule photostability. RSC Advances, 2014, 4, 54919-54923.	3.6	23
66	Interface properties and electronic structure of ultrathin manganese oxide films on Ag(001). Surface Science, 2007, 601, 4484-4487.	1.9	22
67	Influence of ambient air exposure on surface chemistry and electronic properties of thin copper phthalocyanine sensing layers. Thin Solid Films, 2011, 519, 2187-2192.	1.8	22
68	Electronic structure of cobalt phthalocyanine studied by resonant photoemission: Localization of Co-related valence band states. Chemical Physics Letters, 2010, 493, 126-129.	2.6	21
69	Interface Properties of VOPc on Ni(111) and Graphene/Ni(111): Orientation-Dependent Charge Transfer. Journal of Physical Chemistry C, 2015, 119, 8755-8762.	3.1	21
70	The role of donor polymer and PEDOT:PSS formulation on adhesion processes in inverted organic solar cells. Solar Energy Materials and Solar Cells, 2018, 174, 25-33.	6.2	21
71	Electronic Structure and Interface Properties of a Model Molecule for Organic Solar Cells. ChemPhysChem, 2010, 11, 269-275.	2.1	20
72	X-ray Photoelectron Spectroscopy characterization of native and RCA-treated Si (111) substrates and their influence on surface chemistry of copper phthalocyanine thin films. Thin Solid Films, 2010, 518, 2688-2694.	1.8	20

#	Article	IF	Citations
73	The interface between phthalocyanines and PEDOT:PSS: evidence for charge transfer and doping. Surface Science, 2004, 566-568, 554-559.	1.9	19
74	Interface between FePc and Ni(111): Influence of Graphene Buffer Layers. Journal of Physical Chemistry C, 2014, 118, 10106-10112.	3.1	19
75	Charge transfer and polarization screening in organic thin films: phthalocyanines on Au(100). Applied Physics A: Materials Science and Processing, 2009, 95, 173-178.	2.3	18
76	Laterally Resolved Orientation and Film Thickness of Polar Metal Chlorine Phthalocyanines on Au and ITO. Journal of Physical Chemistry C, 2011, 115, 11657-11665.	3.1	18
77	Electronic Properties of Interfaces between PCPDTBT and Prototypical Electrodes Studied by Photoemission Spectroscopy. ChemPhysChem, 2011, 12, 2345-2351.	2.1	18
78	Increased thermal stabilization of polymer photovoltaic cells with oligomeric PCBM. Journal of Materials Chemistry C, 2016, 4, 8121-8129.	5.5	18
79	The role of the density of interface states in interfacial energy level alignment of PTCDA. Organic Electronics, 2017, 49, 249-254.	2.6	18
80	Electronic structure at transition metal phthalocyanine-transition metal oxide interfaces: Cobalt phthalocyanine on epitaxial MnO films. Journal of Chemical Physics, 2015, 142, 101918.	3.0	16
81	Influence of the Fluorination of CoPc on the Interfacial Electronic Structure of the Coordinated Metal Ion. Journal of Physical Chemistry C, 2017, 121, 18564-18574.	3.1	16
82	Ligand Influence on the Photophysical Properties and Electronic Structures of Tungsten Iodide Clusters. European Journal of Inorganic Chemistry, 2017, 2017, 5387-5394.	2.0	16
83	Femtosecond and Attosecond Electron-Transfer Dynamics in PCPDTBT:PCBM Bulk Heterojunctions. Journal of Physical Chemistry C, 2018, 122, 12605-12614.	3.1	16
84	Electric Field Assisted Effects on Molecular Orientation and Surface Morphology of Thin Titanyl(IV)phthalocyanine Films. ChemPhysChem, 2009, 10, 1874-1881.	2.1	15
85	Strong Interaction of MnPc on Ni(111): Influence of Graphene Buffer Layer. Journal of Physical Chemistry C, 2014, 118, 28671-28678.	3.1	15
86	Electronic Structure of Hexacene and Interface Properties on Au(110). Journal of Physical Chemistry C, 2018, 122, 19491-19498.	3.1	15
87	Visualization of the Borazine Core of B ₃ N ₃ -Doped Nanographene by STM. ACS Applied Materials & Doped Nanographene by STM. ACS Applied Nanographene by	8.0	15
88	Molecular orientation in polymer/fullerene blend films and the influence of annealing. Solar Energy Materials and Solar Cells, 2014, 128, 119-125.	6.2	14
89	Superluminescence from an optically pumped molecular tunneling junction by injection of plasmon induced hot electrons. Beilstein Journal of Nanotechnology, 2015, 6, 1100-1106.	2.8	14
90	Transition-Metal Phthalocyanines on Transition-Metal Oxides: Iron and Cobalt Phthalocyanine on Epitaxial MnO and TiO <i></i> >/sub>> Films. Journal of Physical Chemistry C, 2015, 119, 27569-27579.	3.1	14

#	Article	IF	Citations
91	GaN nucleation on (0001)-sapphire via ion-induced nitridation of gallium. Applied Surface Science, 2006, 252, 7671-7677.	6.1	12
92	Magnetic field-induced reactions on the surface of chloroaluminum phthalocyanine thin films. Journal of Chemical Physics, 2011, 134, 124703.	3.0	12
93	Oligo- and poly(fullerene)s for photovoltaic applications: Modeled electronic behaviors and synthesis. Journal of Polymer Science Part A, 2017, 55, 1345-1355.	2.3	12
94	PMMA as an effective protection layer against the oxidation of P3HT and MDMO-PPV by ozone. Journal of Materials Research, 2018, 33, 1891-1901.	2.6	12
95	Chemical bonding studies on UV/ozone- and (NH4)2S-treated InP(001) surfaces by x-ray photoelectron spectroscopy and x-ray induced Auger electron spectroscopy. Surface and Interface Analysis, 1995, 23, 581-588.	1.8	11
96	Comparison of the electronic structure of CuPCF4/ITO and CuPCF4/Au interfaces. Synthetic Metals, 2003, 137, 869-870.	3.9	11
97	E-beam lithography of catalyst patterns for carbon nanotube growth on insulating substrates. Microelectronic Engineering, 2008, 85, 768-773.	2.4	11
98	Effects of interactions with the surface on the orientation of the mesogenic monoazacrown-substituted phthalocyanine films. Thin Solid Films, 2010, 518, 5745-5752.	1.8	11
99	Insight into the orientation of LBG polymer films by XANES experiment and calculation. European Polymer Journal, 2016, 81, 686-693.	5.4	11
100	FePc and FePcF16 on Rutile TiO2(110) and (100): Influence of the Substrate Preparation on the Interaction Strength. Molecules, 2019, 24, 4579.	3.8	11
101	Interaction Channels Between Perfluorinated Iron Phthalocyanine and Cu(111). Physica Status Solidi (B): Basic Research, 2019, 256, 1800292.	1.5	11
102	Photodegradation of Si-PCPDTBT:PCBM active layer for organic solar cells applications: A surface and bulk investigation. Solar Energy Materials and Solar Cells, 2016, 155, 323-330.	6.2	10
103	STM tip-enhanced Raman spectroscopy and the investigation of doped graphene. Vibrational Spectroscopy, 2017, 91, 128-135.	2.2	10
104	Demonstrating the Impact of the Adsorbate Orientation on the Charge Transfer at Organic–Metal Interfaces. Journal of Physical Chemistry C, 2021, 125, 9129-9137.	3.1	10
105	Interfaces between Different Iron Phthalocyanines and Au (111) : Influence of the Fluorination on Structure and Interfacial Interactions. Journal of Physical Chemistry C, 2022, 126, 716-727.	3.1	10
106	Unusual energy shifts in resonant photoemission spectra of organic model molecules. Journal of Chemical Physics, 2009, 130, 194705.	3.0	9
107	Stability of hexa(ethylene glycol) SAMs towards the exposure to natural light and repeated reimmersion. Applied Surface Science, 2012, 258, 7882-7888.	6.1	9
108	Chemical Reaction of Polar Phthalocyanines on Silver: Chloroaluminum Phthalocyanine and Fluoroaluminum Phthalocyanine. Journal of Physical Chemistry C, 2016, 120, 24715-24723.	3.1	9

#	Article	IF	CITATIONS
109	Alkyl chain effects in thin films of substituted phthalocyanines studied using infrared spectroscopy. Applied Surface Science, 2005, 252, 139-142.	6.1	8
110	GaN nucleation on 6H-SiC(0001)-(â^š3×â^š3)R30°:Ga and c-sapphire via ion-induced nitridation of gallium: Wetting layers. Surface Science, 2007, 601, 4521-4525.	1.9	8
111	Photodegradation of Câ€PCPDTBT and Siâ€PCPDTBT: Influence of the Bridging Atom on the Stability of a Lowâ€Bandâ€Gap Polymer for Solar Cell Application. ChemPhysChem, 2015, 16, 428-435.	2.1	8
112	Spin State in Perfluorinated FePc Films on $Cu(111)$ and $Ag(111)$ in Dependence on Film Thickness. Journal of Physical Chemistry C, 2018, 122, 15390-15394.	3.1	8
113	Interface properties of Alq3/TPD on sputter-cleaned ITO. Synthetic Metals, 2001, 121, 1435-1436.	3.9	7
114	Orientation of Differently Substituted Phthalocyanines: First Layers and Thin Films. Molecular Crystals and Liquid Crystals, 2006, 455, 241-249.	0.9	7
115	Chloroaluminum phthalocyanine thin films: chemical reaction and molecular orientation. Analytical and Bioanalytical Chemistry, 2013, 405, 4895-4904.	3.7	7
116	Characterization of the degradation process of Si-PCPDTBT:PC70BM(1:2) blend layers deposited on ITO/glass substrate. Solar Energy Materials and Solar Cells, 2015, 132, 210-214.	6.2	7
117	Highly Oriented Hexacene Molecules Grown in Thin Films on $Cu(110) \hat{a} \in (2 \tilde{A}-1)O$. Journal of Physical Chemistry C, 2019, 123, 27672-27680.	3.1	7
118	Influence of material migration on the mechanical integrity of inverted organic solar cells. Solar Energy Materials and Solar Cells, 2019, 200, 110008.	6.2	7
119	Going beyond Pentacene: Photoemission Tomography of a Heptacene Monolayer on Ag(110). Journal of Physical Chemistry C, 2021, 125, 2918-2925.	3.1	7
120	Influence of the Fluorination of Iron Phthalocyanine on the Electronic Structure of the Central Metal Atom. Journal of Physical Chemistry C, 2021, 125, 6851-6861.	3.1	7
121	Perfluorinated Phthalocyanines on Cu(110) and Cu(110)-(2 $ ilde{A}-$ 1)O: The Special Role of the Central Cobalt Atom. Journal of Physical Chemistry C, 2021, 125, 8803-8814.	3.1	7
122	Hexacene on $Cu(110)$ and $Ag(110)$: Influence of the Substrate on Molecular Orientation and Interfacial Charge Transfer. Journal of Physical Chemistry C, 2022, 126, 5036-5045.	3.1	7
123	Electronic and surfactant effects of As interlayers at interfaces. Surface Science, 1996, 352-354, 855-860.	1.9	6
124	Chemical reactions at Cuâ^•ZnS(001) and Inâ^•ZnS(001) heterojunctions: A comparison of photoelectron and SL2,3 x-ray emission spectroscopy. Applied Physics Letters, 2005, 86, 012108.	3.3	6
125	Electronic structure and self-organization properties of low band gap polymers: The effect of the introduction of additional thiophene moieties. Solar Energy Materials and Solar Cells, 2016, 157, 286-294.	6.2	6
126	Chemical stability of (NH 4) 2 S-passivated InP(001) surfaces $\hat{A}-$ investigations by XPS and XPD. Fresenius' Journal of Analytical Chemistry, 1997, 358, 201-203.	1.5	5

#	Article	IF	Citations
127	Formation of ordered films of axially bridged aluminum phthalocyanine [(tBu)4PcAl]2O via magnetic field-induced reaction. Journal of Chemical Physics, 2013, 139, 204710.	3.0	5
128	Side chain structure and dispersity impact the photostability of low band gap polymers. Polymer Degradation and Stability, 2017, 146, 155-160.	5.8	5
129	Film growth and interface reaction of ultra thin 3d-transition metal oxide/metal layer structures. Mikrochimica Acta, 2006, 156, 27-31.	5.0	4
130	Catalyst patterning for carbon nanotube growth on elevating posts by self-aligned double-layer electron beam lithography. Journal of Vacuum Science & Technology B, 2008, 26, 2447-2450.	1.3	4
131	Improving etch selectivity and stability of novolak based negative resists by fluorine plasma treatment. Microelectronic Engineering, 2009, 86, 769-772.	2.4	4
132	Vibrational and electronic characterisation of Staphylococcus aureus wall teichoic acids and relevant components in thin films. Analytical and Bioanalytical Chemistry, 2010, 397, 2429-2437.	3.7	4
133	In Situ Generation of Fullerene from a Poly(fullerene). Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 1434-1452.	2.1	4
134	Interface properties of CoPc and CoPcF ₁₆ on graphene/nickel: influence of germanium intercalation. Journal of Physics Condensed Matter, 2019, 31, 174004.	1.8	4
135	Interface interaction of transition metal phthalocyanines with strontium titanate (100). Beilstein Journal of Nanotechnology, 2021, 12, 485-496.	2.8	4
136	Influence of surface oxidation on the photoelectron diffraction intensities from InP single crystals. Journal of Electron Spectroscopy and Related Phenomena, 1997, 87, 73-79.	1.7	3
137	Substrate-dependent wetting layer formation during GaN growth: Impact on the morphology of the films. Journal of Applied Physics, 2007, 102, 044907.	2.5	3
138	Characterization of the morphology and composition of commercial negative resists used for lithographic processes. Analytical and Bioanalytical Chemistry, 2009, 393, 1899-1905.	3.7	3
139	Selfâ€assembly and structure formation in liquid crystalline phthalocyanine thin films studied by Raman spectroscopy and AFM. Journal of Raman Spectroscopy, 2012, 43, 1227-1236.	2.5	3
140	Controlling the interface energetics of PCPDTBT by p-doping. Organic Electronics, 2016, 39, 267-271.	2.6	3
141	Evidence for Photo-Switchable Carrier Mobilities in Blends of PbS Nanocrystals and Photochromic Dithienylcyclopentene Derivatives. Zeitschrift Fur Physikalische Chemie, 2018, 232, 1369-1381.	2.8	3
142	B3N3-Substituted Nanographene Molecules: Influence of Planarity on the Electronic Structure and Molecular Orientation in Thin Films. ACS Applied Electronic Materials, 2021, 3, 825-837.	4.3	3
143	Mitigating the photodegradation of all-inorganic mixed-halide perovskite nanocrystals by ligand exchange. Physical Chemistry Chemical Physics, 2022, 24, 10944-10951.	2.8	3
144	Interface Properties of CoPc on Nanographene-Covered Au(111) and the Influence of Annealing. Langmuir, 2021 , 37 , 10750 - 10761 .	3.5	2

#	ARTICLE	IF	CITATION
145	Porphyrin Functionalization of CsPbBrl ₂ /SiO ₂ Core–Shell Nanocrystals Enhances the Stability and Efficiency in Electroluminescent Devices. Advanced Optical Materials, 2022, 10, 2101945.	7.3	2
146	Electronic structure of CdTe probed by Cd and Te M4,5 X-ray emission spectra. Journal of Electron Spectroscopy and Related Phenomena, 2007, 154, 48-52.	1.7	1
147	The interface between chloroaluminum phthalocyanine and titanium dioxide: the influence of surface defects and substrate termination. Physical Chemistry Chemical Physics, 2021, 23, 13370-13380.	2.8	1
148	Inhomogeneous defect distribution of triangular WS2 monolayer revealed by surface-enhanced and tip-enhanced Raman and photoluminescence spectroscopy. Journal of Chemical Physics, 2022, 156, 034702.	3.0	1
149	Electronic structure studies of carbon nanotubes: Aligned, doped and filled. AIP Conference Proceedings, 2001, , .	0.4	0
150	Charge transfer and polarization screening at organic/metal interfaces: single crystalline versus polycrystalline gold. Springer Proceedings in Physics, 2009, , 147-151.	0.2	0
151	The Devil is in the Details: Tailoring the Surface Chemistry of Perovskite Nanocrystals for Novel Optoelectronic Devices. , 0, , .		O