Raffi V Aroian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7056903/publications.pdf

Version: 2024-02-01

			136740	1	138251
	59	4,300	32		58
	papers	citations	h-index		g-index
Ξ				ľ	
	63	63	63		3584
	all docs	docs citations	times ranked		citing authors

#	Article	IF	Citations
1	Nematode ascarosides attenuate mammalian type 2 inflammatory responses. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	3.3	5
2	Recombinant Paraprobiotics as a New Paradigm for Treating Gastrointestinal Nematode Parasites of Humans. Antimicrobial Agents and Chemotherapy, $2021,65,\ldots$	1.4	10
3	Yeast Particle Encapsulation of Scaffolded Terpene Compounds for Controlled Terpene Release. Foods, 2021, 10, 1207.	1.9	6
4	An inactivated bacterium (paraprobiotic) expressing Bacillus thuringiensis Cry5B as a therapeutic for Ascaris and Parascaris spp. infections in large animals. One Health, 2021, 12, 100241.	1.5	8
5	Immune reactivity and host modulatory roles of two novel Haemonchus contortus cathepsin B-like proteases. Parasites and Vectors, 2021, 14, 580.	1.0	2
6	A new paraprobiotic-based treatment for control of Haemonchus contortus in sheep. International Journal for Parasitology: Drugs and Drug Resistance, 2020, 14, 230-236.	1.4	16
7	Anthelmintic Activity of Yeast Particle-Encapsulated Terpenes. Molecules, 2020, 25, 2958.	1.7	18
8	Gut microbial signatures associated with moxidectin treatment efficacy of Haemonchus contortus in infected goats. Veterinary Microbiology, 2020, 242, 108607.	0.8	9
9	Identification of small molecule enzyme inhibitors as broad-spectrum anthelmintics. Scientific Reports, 2019, 9, 9085.	1.6	25
10	Drug Screening for Discovery of Broad-spectrum Agents for Soil-transmitted Nematodes. Scientific Reports, 2019, 9, 12347.	1.6	34
11	Cognitive and Microbiome Impacts of Experimental Ancylostoma ceylanicum Hookworm Infections in Hamsters. Scientific Reports, 2019, 9, 7868.	1.6	9
12	A highly expressed intestinal cysteine protease of Ancylostoma ceylanicum protects vaccinated hamsters from hookworm infection. PLoS Neglected Tropical Diseases, 2019, 13, e0007345.	1.3	11
13	Bacillus thuringiensis Cry5B is Active against Strongyloides stercoralis in vitro. American Journal of Tropical Medicine and Hygiene, 2019, 101, 1177-1182.	0.6	3
14	Small Molecule Inhibitors of Metabolic Enzymes Repurposed as a New Class of Anthelmintics. ACS Infectious Diseases, 2018, 4, 1130-1145.	1.8	18
15	Bacillus thuringiensis Cry5B protein as a new pan-hookworm cure. International Journal for Parasitology: Drugs and Drug Resistance, 2018, 8, 287-294.	1.4	20
16	In vivo and in vitro studies of Cry5B and nicotinic acetylcholine receptor agonist anthelmintics reveal a powerful and unique combination therapy against intestinal nematode parasites. PLoS Neglected Tropical Diseases, 2018, 12, e0006506.	1.3	23
17	A comparative analysis of preservation techniques for the optimal molecular detection of hookworm DNA in a human fecal specimen. PLoS Neglected Tropical Diseases, 2018, 12, e0006130.	1.3	40
18	Recombinant subunit vaccines for soil-transmitted helminths. Parasitology, 2017, 144, 1845-1870.	0.7	34

#	Article	IF	Citations
19	HLH-30/TFEB-mediated autophagy functions in a cell-autonomous manner for epithelium intrinsic cellular defense against bacterial pore-forming toxin in <i>C. elegans</i> . Autophagy, 2017, 13, 371-385.	4.3	46
20	The pesticidal Cry6Aa toxin from Bacillus thuringiensis is structurally similar to HlyE-family alpha pore-forming toxins. BMC Biology, 2016, 14, 71.	1.7	37
21	Intracellular and Extracellular Expression of Bacillus thuringiensis Crystal Protein Cry5B in Lactococcus lactis for Use as an Anthelminthic. Applied and Environmental Microbiology, 2016, 82, 1286-1294.	1.4	11
22	eIF2α confers cellular tolerance to S. aureus α-toxin. Frontiers in Immunology, 2015, 6, 383.	2.2	8
23	Protection and Delivery of Anthelmintic Protein Cry5B to Nematodes Using Mesoporous Silicon Particles. ACS Nano, 2015, 9, 6158-6167.	7. 3	45
24	The genome and transcriptome of the zoonotic hookworm Ancylostoma ceylanicum identify infection-specific gene families. Nature Genetics, 2015, 47, 416-422.	9.4	91
25	Novel Role for the <i>yceGH</i> Tellurite Resistance Genes in the Pathogenesis of Bacillus anthracis. Infection and Immunity, 2014, 82, 1132-1140.	1.0	24
26	Nitazoxanide: Nematicidal mode of action and drug combination studies. Molecular and Biochemical Parasitology, 2014, 193, 1-8.	0.5	35
27	Role of Pore-Forming Toxins in Bacterial Infectious Diseases. Microbiology and Molecular Biology Reviews, 2013, 77, 173-207.	2.9	339
28	Bacillus thuringiensis-derived Cry5B Has Potent Anthelmintic Activity against Ascaris suum. PLoS Neglected Tropical Diseases, 2013, 7, e2263.	1.3	43
29	Bacillus subtilis Strain Engineered for Treatment of Soil-Transmitted Helminth Diseases. Applied and Environmental Microbiology, 2013, 79, 5527-5532.	1.4	20
30	Neuronal GoÎ \pm and CAPS Regulate Behavioral and Immune Responses to Bacterial Pore-Forming Toxins. PLoS ONE, 2013, 8, e54528.	1.1	18
31	An Extensive Comparison of the Effect of Anthelmintic Classes on Diverse Nematodes. PLoS ONE, 2013, 8, e70702.	1.1	77
32	Mechanistic and Single-Dose In Vivo Therapeutic Studies of Cry5B Anthelmintic Action against Hookworms. PLoS Neglected Tropical Diseases, 2012, 6, e1900.	1.3	33
33	Structure and Glycolipid Binding Properties of the Nematicidal Protein Cry5B. Biochemistry, 2012, 51, 9911-9921.	1.2	68
34	Bacterial pore-forming proteins as anthelmintics. Invertebrate Neuroscience, 2012, 12, 37-41.	1.8	19
35	RAB-5- and RAB-11-Dependent Vesicle-Trafficking Pathways Are Required for Plasma Membrane Repair after Attack by Bacterial Pore-Forming Toxin. Cell Host and Microbe, 2011, 9, 147-157.	5.1	110
36	Global Functional Analyses of Cellular Responses to Pore-Forming Toxins. PLoS Pathogens, 2011, 7, e1001314.	2.1	145

#	Article	IF	CITATIONS
37	The Pore-Forming Protein Cry5B Elicits the Pathogenicity of Bacillus sp. against Caenorhabditis elegans. PLoS ONE, 2011, 6, e29122.	1.1	40
38	Bacillus thuringiensis Cry5B Protein Is Highly Efficacious as a Single-Dose Therapy against an Intestinal Roundworm Infection in Mice. PLoS Neglected Tropical Diseases, 2010, 4, e614.	1.3	53
39	WWP-1 Is a Novel Modulator of the DAF-2 Insulin-Like Signaling Network Involved in Pore-Forming Toxin Cellular Defenses in Caenorhabditis elegans. PLoS ONE, 2010, 5, e9494.	1.1	49
40	Discovery of a highly synergistic anthelmintic combination that shows mutual hypersusceptibility. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5955-5960.	3.3	70
41	The New Anthelmintic Tribendimidine is an L-type (Levamisole and Pyrantel) Nicotinic Acetylcholine Receptor Agonist. PLoS Neglected Tropical Diseases, 2009, 3, e499.	1.3	91
42	Hypoxia and the Hypoxic Response Pathway Protect against Pore-Forming Toxins in C. elegans. PLoS Pathogens, 2009, 5, e1000689.	2.1	96
43	Expression of Cry5B protein from Bacillus thuringiensis in plant roots confers resistance to root-knot nematode. Biological Control, 2008, 47, 97-102.	1.4	69
44	Activation of the Unfolded Protein Response Is Required for Defenses against Bacterial Pore-Forming Toxin In Vivo. PLoS Pathogens, 2008, 4, e1000176.	2.1	174
45	Resistance is non-futile: Resistance to Cry5B in the nematode Caenorhabditis elegans. Journal of Invertebrate Pathology, 2007, 95, 198-200.	1.5	11
46	Pore-forming toxins and cellular non-immune defenses (CNIDs). Current Opinion in Microbiology, 2007, 10, 57-61.	2.3	113
47	Resistance to Bacillus thuringiensis Toxin in Caenorhabditis elegans from Loss of Fucose. Journal of Biological Chemistry, 2007, 282, 3302-3311.	1.6	49
48	Resistance to root-knot nematode in tomato roots expressing a nematicidal Bacillus thuringiensis crystal protein. Plant Biotechnology Journal, 2007, 5, 455-464.	4.1	97
49	Assays for Toxicity Studies in <i>C. elegans</i> With Bt Crystal Proteins. , 2006, 351, 139-154.		71
50	Caenorhabditis elegans Carbohydrates in Bacterial Toxin Resistance. Methods in Enzymology, 2006, 417, 340-358.	0.4	18
51	A purified Bacillus thuringiensis crystal protein with therapeutic activity against the hookworm parasite Ancylostoma ceylanicum. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 15154-15159.	3.3	85
52	Many roads to resistance: how invertebrates adapt to Bt toxins. BioEssays, 2005, 27, 614-624.	1.2	145
53	Glycolipids as Receptors for Bacillus thuringiensis Crystal Toxin. Science, 2005, 307, 922-925.	6.0	316
54	Mitogen-activated protein kinase pathways defend against bacterial pore-forming toxins. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10995-11000.	3.3	312

#	Article	IF	CITATIONS
55	Pore worms: Using Caenorhabditis elegans to study how bacterial toxins interact with their target host. International Journal of Medical Microbiology, 2004, 293, 599-607.	1.5	53
56	Bacillus thuringiensis crystal proteins that target nematodes. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 2760-2765.	3.3	372
57	Resistance to a Bacterial Toxin Is Mediated by Removal of a Conserved Glycosylation Pathway Required for Toxin-Host Interactions. Journal of Biological Chemistry, 2003, 278, 45594-45602.	1.6	113
58	Bt Toxin Resistance from Loss of a Putative Carbohydrate-Modifying Enzyme. Science, 2001, 293, 860-864.	6.0	225
59	<i>Bacillus thuringiensis</i> (<i>Bt</i>) Toxin Susceptibility and Isolation of Resistance Mutants in the Nematode <i>Caenorhabditis elegans</i> . Genetics, 2000, 155, 1693-1699.	1.2	218