Francisco J GarcÃ-a-Mateos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/705690/publications.pdf Version: 2024-02-01

471509 713466 21 966 17 21 citations h-index g-index papers 21 21 21 1308 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Removal of paracetamol on biomass-derived activated carbon: Modeling the fixed bed breakthrough curves using batch adsorption experiments. Chemical Engineering Journal, 2015, 279, 18-30.	12.7	139
2	Biomass-derived binderless fibrous carbon electrodes for ultrafast energy storage. Green Chemistry, 2016, 18, 1506-1515.	9.0	102
3	Role of surface phosphorus complexes on the oxidation of porous carbons. Fuel Processing Technology, 2017, 157, 116-126.	7.2	100
4	Phosphorus functionalization for the rapid preparation of highly nanoporous submicron-diameter carbon fibers by electrospinning of lignin solutions. Journal of Materials Chemistry A, 2018, 6, 1219-1233.	10.3	96
5	Lignin-derived Pt supported carbon (submicron)fiber electrocatalysts for alcohol electro-oxidation. Applied Catalysis B: Environmental, 2017, 211, 18-30.	20.2	75
6	Activation of electrospun lignin-based carbon fibers and their performance as self-standing supercapacitor electrodes. Separation and Purification Technology, 2020, 241, 116724.	7.9	67
7	Biomass Waste Carbon Materials as adsorbents for CO2 Capture under Post-Combustion Conditions. Frontiers in Materials, 2016, 3, .	2.4	55
8	Fixing PAN Nanofiber Mats during Stabilization for Carbonization and Creating Novel Metal/Carbon Composites. Polymers, 2018, 10, 735.	4.5	46
9	Controlling the Composition, Morphology, Porosity, and Surface Chemistry of Lignin-Based Electrospun Carbon Materials. Frontiers in Materials, 2019, 6, .	2.4	43
10	Enhanced production of phenolics and aromatics from raw bio-oil using HZSM-5 zeolite additives for PtPd/C and NiW/C catalysts. Applied Catalysis B: Environmental, 2019, 259, 118112.	20.2	40
11	Role of different nitrogen functionalities on the electrochemical performance of activated carbons. Carbon, 2018, 126, 65-76.	10.3	33
12	Stabilization of Electrospun PAN/Gelatin Nanofiber Mats for Carbonization. Journal of Nanomaterials, 2018, 2018, 1-12.	2.7	25
13	Flexible binderless capacitors based on P- and N-containing fibrous activated carbons from denim cloth waste. Carbon, 2018, 139, 599-608.	10.3	23
14	Effect of Co-solution of Carbon Precursor and Activating Agent on the Textural Properties of Highly Porous Activated Carbon Obtained by Chemical Activation of Lignin With H3PO4. Frontiers in Materials, 2020, 7, .	2.4	20
15	Novel Synthesis Method of porous VPO catalysts with fibrous structure by Electrospinning. Catalysis Today, 2016, 277, 266-273.	4.4	19
16	Adaptable kinetic model for the transient and pseudo-steady states in the hydrodeoxygenation of raw bio-oil. Chemical Engineering Journal, 2020, 400, 124679.	12.7	19
17	Alcohol Dehydrogenation on Kraft Lignin-Derived Chars with Surface Basicity. Catalysts, 2017, 7, 308.	3.5	18
18	About the Role of Porosity and Surface Chemistry of Phosphorus-Containing Activated Carbons in the Removal of Micropollutants. Frontiers in Materials, 2019, 6, .	2.4	14

#	Article	IF	CITATIONS
19	Morphological study of stabilization and carbonization of polyacrylonitrile/TiO ₂ nanofiber mats. Journal of Engineered Fibers and Fabrics, 2019, 14, 155892501986224.	1.0	13
20	Acid Mesoporous Carbon Monoliths from Lignocellulosic Biomass Waste for Methanol Dehydration. Materials, 2019, 12, 2394.	2.9	11
21	Phosphorus containing carbon (submicron)fibers as efficient acid catalysts. Catalysis Today, 2022, 383, 308-319.	4.4	8