Leonidas C Platanias

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7056599/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
2	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
3	Mechanisms of type-I- and type-II-interferon-mediated signalling. Nature Reviews Immunology, 2005, 5, 375-386.	10.6	2,758
4	Map kinase signaling pathways and hematologic malignancies. Blood, 2003, 101, 4667-4679.	0.6	389
5	Activation of the p38 Mitogen-activated Protein Kinase by Type I Interferons. Journal of Biological Chemistry, 1999, 274, 30127-30131.	1.6	211
6	Genistein Inhibits p38 Map Kinase Activation, Matrix Metalloproteinase Type 2, and Cell Invasion in Human Prostate Epithelial Cells. Cancer Research, 2005, 65, 3470-3478.	0.4	201
7	Protein Kinase C-Î′ (PKC-Î′) Is Activated by Type I Interferons and Mediates Phosphorylation of Stat1 on Serine 727. Journal of Biological Chemistry, 2002, 277, 14408-14416.	1.6	193
8	Role of the Akt pathway in mRNA translation of interferon-stimulated genes. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 4808-4813.	3.3	183
9	Interferon-α Engages the Insulin Receptor Substrate-1 to Associate with the Phosphatidylinositol 3′-Kinase. Journal of Biological Chemistry, 1995, 270, 15938-15941.	1.6	177
10	The Rac1/p38 Mitogen-activated Protein Kinase Pathway Is Required for Interferon α-dependent Transcriptional Activation but Not Serine Phosphorylation of Stat Proteins. Journal of Biological Chemistry, 2000, 275, 27634-27640.	1.6	175
11	Interferons: mechanisms of action and clinical applications. Current Opinion in Oncology, 2003, 15, 431-439.	1.1	166
12	Critical roles for mTORC2- and rapamycin-insensitive mTORC1-complexes in growth and survival of BCR-ABL-expressing leukemic cells. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12469-12474.	3.3	166
13	Statins in tumor suppression. Cancer Letters, 2008, 260, 11-19.	3.2	156
14	Activation of the p38 Mitogen-activated Protein Kinase Mediates the Suppressive Effects of Type I Interferons and Transforming Growth Factor-β on Normal Hematopoiesis. Journal of Biological Chemistry, 2002, 277, 7726-7735.	1.6	153
15	ERK1 and ERK2 Activate CCAAAT/Enhancer-binding Protein-β-dependent Gene Transcription in Response to Interferon-γ. Journal of Biological Chemistry, 2001, 276, 287-297.	1.6	151
16	IDO1 Inhibition Synergizes with Radiation and PD-1 Blockade to Durably Increase Survival Against Advanced Glioblastoma. Clinical Cancer Research, 2018, 24, 2559-2573.	3.2	147
17	Activation of Rac1 and the p38 Mitogen-activated Protein Kinase Pathway in Response to All-trans-retinoic Acid. Journal of Biological Chemistry, 2001, 276, 4012-4019.	1.6	146
18	The p38 MAPK Pathway Mediates the Growth Inhibitory Effects of Interferon-α in BCR-ABL-expressing Cells. Journal of Biological Chemistry, 2001, 276, 28570-28577.	1.6	135

#	Article	IF	CITATIONS
19	The p38 mitogen-activated protein kinase pathway and its role in interferon signaling. , 2003, 98, 129-142.		134
20	The Schlafen Family of Proteins and Their Regulation by Interferons. Journal of Interferon and Cytokine Research, 2013, 33, 206-210.	0.5	131
21	Differential Regulation of Membrane Type 1-Matrix Metalloproteinase Activity by ERK 1/2- and p38 MAPK-modulated Tissue Inhibitor of Metalloproteinases 2 Expression Controls Transforming Growth Factor-β1-induced Pericellular Collagenolysis. Journal of Biological Chemistry, 2004, 279, 39042-39050.	1.6	130
22	Biological Responses to Arsenic Compounds. Journal of Biological Chemistry, 2009, 284, 18583-18587.	1.6	129
23	Mnk kinase pathway: Cellular functions and biological outcomes. World Journal of Biological Chemistry, 2014, 5, 321.	1.7	129
24	Jak family of kinases in cancer. Cancer and Metastasis Reviews, 2003, 22, 423-434.	2.7	126
25	Activation of Protein Kinase Cl ^{$^{\prime}$} by IFN-l ^{3} . Journal of Immunology, 2003, 171, 267-273.	0.4	124
26	Activation of a CrkL-Stat5 Signaling Complex by Type I Interferons. Journal of Biological Chemistry, 1999, 274, 571-573.	1.6	120
27	Inhibition of overactivated p38 MAPK can restore hematopoiesis in myelodysplastic syndrome progenitors. Blood, 2006, 108, 4170-4177.	0.6	120
28	Intersection of mTOR and STAT signaling in immunity. Trends in Immunology, 2015, 36, 21-29.	2.9	119
29	Autophagic degradation of the BCR-ABL oncoprotein and generation of antileukemic responses by arsenic trioxide. Blood, 2012, 120, 3555-3562.	0.6	117
30	Activation of the p70 S6 Kinase and Phosphorylation of the 4E-BP1 Repressor of mRNA Translation by Type I Interferons. Journal of Biological Chemistry, 2003, 278, 27772-27780.	1.6	114
31	Concordance of Genomic Alterations by Next-Generation Sequencing in Tumor Tissue versus Circulating Tumor DNA in Breast Cancer. Molecular Cancer Therapeutics, 2017, 16, 1412-1420.	1.9	114
32	The Type I Interferon Receptor Mediates Tyrosine Phosphorylation of Insulin Receptor Substrate 2. Journal of Biological Chemistry, 1996, 271, 278-282.	1.6	113
33	Activation of Rac1 and the p38 Mitogen-activated Protein Kinase Pathway in Response to Arsenic Trioxide. Journal of Biological Chemistry, 2002, 277, 44988-44995.	1.6	112
34	Autophagy Is a Critical Mechanism for the Induction of the Antileukemic Effects of Arsenic Trioxide. Journal of Biological Chemistry, 2010, 285, 29989-29997.	1.6	110
35	Association of the Interferon-dependent Tyrosine Kinase Tyk-2 with the Hematopoietic Cell Phosphatase. Journal of Biological Chemistry, 1995, 270, 18179-18182.	1.6	108
36	Role of p38α Map Kinase in Type I Interferon Signaling. Journal of Biological Chemistry, 2004, 279, 970-979.	1.6	106

#	Article	IF	CITATIONS
37	Activation of Protein Kinase Cl̂´ by All-trans-retinoic Acid. Journal of Biological Chemistry, 2003, 278, 32544-32551.	1.6	101
38	Concordance between genomic alterations assessed by next-generation sequencing in tumor tissue or circulating cell-free DNA. Oncotarget, 2016, 7, 65364-65373.	0.8	99
39	Myeloid-Derived Suppressive Cells Promote B cell–Mediated Immunosuppression via Transfer of PD-L1 in Glioblastoma. Cancer Immunology Research, 2019, 7, 1928-1943.	1.6	99
40	Regulatory Effects of Mammalian Target of Rapamycin-activated Pathways in Type I and II Interferon Signaling. Journal of Biological Chemistry, 2007, 282, 1757-1768.	1.6	98
41	Type I Interferon (IFN)-Regulated Activation of Canonical and Non-Canonical Signaling Pathways. Frontiers in Immunology, 2020, 11, 606456.	2.2	98
42	Cutting Edge: Activation of the p38 Mitogen-Activated Protein Kinase Signaling Pathway Mediates Cytokine-Induced Hemopoietic Suppression in Aplastic Anemia. Journal of Immunology, 2002, 168, 5984-5988.	0.4	93
43	Dual mTORC2/mTORC1 Targeting Results in Potent Suppressive Effects on Acute Myeloid Leukemia (AML) Progenitors. Clinical Cancer Research, 2011, 17, 4378-4388.	3.2	92
44	The Type I Interferon Receptor Mediates Tyrosine Phosphorylation of the CrkL Adaptor Protein. Journal of Biological Chemistry, 1997, 272, 29991-29994.	1.6	91
45	Autophagy Is a Survival Mechanism of Acute Myelogenous Leukemia Precursors during Dual mTORC2/mTORC1 Targeting. Clinical Cancer Research, 2014, 20, 2400-2409.	3.2	90
46	Differences in Interferon \hat{I}_{\pm} and \hat{I}^2 Signaling. Journal of Biological Chemistry, 1996, 271, 23630-23633.	1.6	89
47	Engagement of Gab1 and Gab2 in Erythropoietin Signaling. Journal of Biological Chemistry, 1999, 274, 24469-24474.	1.6	88
48	MEKK1 plays a critical role in activating the transcription factor C/EBP-Â-dependent gene expression in response to IFN-Â. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 7945-7950.	3.3	88
49	Inhibition of Mnk kinase activity by cercosporamide and suppressive effects on acute myeloid leukemia precursors. Blood, 2013, 121, 3675-3681.	0.6	88
50	Targeting mTOR for the treatment of AML. New agents and new directions. Oncotarget, 2011, 2, 510-517.	0.8	85
51	Role of the p38 Mitogen-Activated Protein Kinase Pathway in the Generation of Arsenic Trioxide–Dependent Cellular Responses. Cancer Research, 2006, 66, 6763-6771.	0.4	80
52	Interferon-Î ³ engages the p70 S6 kinase to regulate phosphorylation of the 40S S6 ribosomal protein. Experimental Cell Research, 2004, 295, 173-182.	1.2	79
53	Type I interferon (IFN)-dependent activation of Mnk1 and its role in the generation of growth inhibitory responses. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12097-12102.	3.3	79
54	Role of Interferon α (IFNα)-inducible Schlafen-5 in Regulation of Anchorage-independent Growth and Invasion of Malignant Melanoma Cells. Journal of Biological Chemistry, 2010, 285, 40333-40341.	1.6	78

#	Article	IF	CITATIONS
55	Interferon Receptor Signaling in Malignancy: A Network of Cellular Pathways Defining Biological Outcomes. Molecular Cancer Research, 2014, 12, 1691-1703.	1.5	77
56	Suppressive Effects of Statins on Acute Promyelocytic Leukemia Cells. Cancer Research, 2007, 67, 4524-4532.	0.4	75
57	IRF8 directs stress-induced autophagy in macrophages and promotes clearance of Listeria monocytogenes. Nature Communications, 2015, 6, 6379.	5.8	75
58	The p38 Mitogen-Activated Protein Kinase Pathway in Interferon Signal Transduction. Journal of Interferon and Cytokine Research, 2005, 25, 749-756.	0.5	74
59	Dual Regulatory Roles of Phosphatidylinositol 3-Kinase in IFN Signaling. Journal of Immunology, 2008, 181, 7316-7323.	0.4	74
60	Antileukemic effects of AMPK activators on BCR-ABL–expressing cells. Blood, 2011, 118, 6399-6402.	0.6	74
61	The PI3' Kinase Pathway in Interferon Signaling. Journal of Interferon and Cytokine Research, 2005, 25, 780-787.	0.5	71
62	IFN-γ Activates the C3C/Rap1 Signaling Pathway. Journal of Immunology, 2000, 164, 1800-1806.	0.4	68
63	Interferon-Dependent Activation of the Serine Kinase PI 3′-Kinase Requires Engagement of the IRS Pathway but Not the Stat Pathway. Biochemical and Biophysical Research Communications, 2000, 270, 158-162.	1.0	66
64	Central Role of ULK1 in Type I Interferon Signaling. Cell Reports, 2015, 11, 605-617.	2.9	66
65	Suppression of Programmed Cell Death 4 (PDCD4) Protein Expression by BCR-ABL-regulated Engagement of the mTOR/p70 S6 Kinase Pathway. Journal of Biological Chemistry, 2008, 283, 8601-8610.	1.6	65
66	Statin-Dependent Suppression of the Akt/Mammalian Target of Rapamycin Signaling Cascade and Programmed Cell Death 4 Up-Regulation in Renal Cell Carcinoma. Clinical Cancer Research, 2008, 14, 4640-4649.	3.2	64
67	Role of the p38 Mitogen-activated Protein Kinase Pathway in the Generation of the Effects of Imatinib Mesylate (STI571) in BCR-ABL-expressing Cells. Journal of Biological Chemistry, 2004, 279, 25345-25352.	1.6	63
68	Interferon-Dependent Engagement of Eukaryotic Initiation Factor 4B via S6 Kinase (S6K)- and Ribosomal Protein S6K-Mediated Signals. Molecular and Cellular Biology, 2009, 29, 2865-2875.	1.1	62
69	Role of the p38 Mitogen-Activated Protein Kinase Pathway in Cytokine-Mediated Hematopoietic Suppression in Myelodysplastic Syndromes. Cancer Research, 2005, 65, 9029-9037.	0.4	60
70	Role of Schlafen 2 (SLFN2) in the Generation of Interferon α-induced Growth Inhibitory Responses. Journal of Biological Chemistry, 2009, 284, 25051-25064.	1.6	60
71	Differential regulation of the p70 S6 kinase pathway by interferon α (IFNα) and imatinib mesylate (STI571) in chronic myelogenous leukemia cells. Blood, 2005, 106, 2436-2443.	0.6	57
72	CrkL and CrkII participate in the generation of the growth inhibitory effects of interferons on primary hematopoietic progenitors. Experimental Hematology, 1999, 27, 1315-1321.	0.2	56

#	Article	IF	CITATIONS
73	Role of Stat5 in Type I interferon-signaling and transcriptional regulation. Biochemical and Biophysical Research Communications, 2003, 308, 325-330.	1.0	56
74	Activation of the Mitogen- and Stress-activated Kinase 1 by Arsenic Trioxide. Journal of Biological Chemistry, 2006, 281, 22446-22452.	1.6	55
75	AMPK as a therapeutic target in renal cell carcinoma. Cancer Biology and Therapy, 2010, 10, 1168-1177.	1.5	55
76	AMP-activated kinase (AMPK)-generated signals in malignant melanoma cell growth and survival. Biochemical and Biophysical Research Communications, 2010, 398, 135-139.	1.0	54
77	Advanced Age Increases Immunosuppression in the Brain and Decreases Immunotherapeutic Efficacy in Subjects with Glioblastoma. Clinical Cancer Research, 2020, 26, 5232-5245.	3.2	52
78	Discovery and characterization of novel small-molecule CXCR4 receptor agonists and antagonists. Scientific Reports, 2016, 6, 30155.	1.6	51
79	Targeting the mTOR Pathway in Leukemia. Journal of Cellular Biochemistry, 2016, 117, 1745-1752.	1.2	50
80	The Proximal Tyrosines of the Cytoplasmic Domain of the β Chain of the Type I Interferon Receptor Are Essential for Signal Transducer and Activator of Transcription (Stat) 2 Activation. Journal of Biological Chemistry, 1999, 274, 4045-4052.	1.6	48
81	Human Schlafen 5 (SLFN5) Is a Regulator of Motility and Invasiveness of Renal Cell Carcinoma Cells. Molecular and Cellular Biology, 2015, 35, 2684-2698.	1.1	48
82	Engagement of Protein Kinase C-Î, in Interferon Signaling in T-cells. Journal of Biological Chemistry, 2004, 279, 29911-29920.	1.6	47
83	Type I and II Interferons in the Anti-Tumor Immune Response. Cancers, 2021, 13, 1037.	1.7	47
84	Activation of the p70 S6 kinase by all-trans-retinoic acid in acute promyelocytic leukemia cells. Blood, 2005, 105, 1669-1677.	0.6	46
85	Regulatory effects of mTORC2 complexes in type I IFN signaling and in the generation of IFN responses. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7723-7728.	3.3	46
86	The Protein Kinase C (PKC) Family of Proteins in Cytokine Signaling in Hematopoiesis. Journal of Interferon and Cytokine Research, 2007, 27, 623-636.	0.5	45
87	Activation of the p38 Map kinase pathway is essential for the antileukemic effects of dasatinib. Leukemia and Lymphoma, 2009, 50, 2017-2029.	0.6	44
88	Mechanisms of mRNA translation of interferon stimulated genes. Cytokine, 2010, 52, 123-127.	1.4	43
89	Emerging roles for mammalian target of rapamycin inhibitors in the treatment of solid tumors and hematological malignancies. Current Opinion in Oncology, 2011, 23, 578-586.	1.1	43
90	Association of a novel circulating tumor DNA next-generating sequencing platform with circulating tumor cells (CTCs) and CTC clusters in metastatic breast cancer. Breast Cancer Research, 2019, 21, 137.	2.2	42

#	Article	IF	CITATIONS
91	AMPK in BCR-ABL expressing leukemias. Regulatory effects and therapeutic implications. Oncotarget, 2011, 2, 1322-1328.	0.8	42
92	Interaction of the Transcriptional Activator Stat-2 with the Type I Interferon Receptor. Journal of Biological Chemistry, 1995, 270, 24627-24630.	1.6	40
93	Regulatory Effects of Mammalian Target of Rapamycin-mediated Signals in the Generation of Arsenic Trioxide Responses. Journal of Biological Chemistry, 2008, 283, 1992-2001.	1.6	40
94	Merestinib blocks Mnk kinase activity in acute myeloid leukemia progenitors and exhibits antileukemic effects in vitro and in vivo. Blood, 2016, 128, 410-414.	0.6	40
95	Landscape of circulating tumour DNA in metastatic breast cancer. EBioMedicine, 2020, 58, 102914.	2.7	40
96	Negative Regulatory Effects of Mnk Kinases in the Generation of Chemotherapy-Induced Antileukemic Responses. Molecular Pharmacology, 2010, 78, 778-784.	1.0	39
97	MNK Inhibition Disrupts Mesenchymal Glioma Stem Cells and Prolongs Survival in a Mouse Model of Glioblastoma. Molecular Cancer Research, 2016, 14, 984-993.	1.5	38
98	Differential Regulation of ZEB1 and EMT by MAPK-Interacting Protein Kinases (MNK) and eIF4E in Pancreatic Cancer. Molecular Cancer Research, 2016, 14, 216-227.	1.5	38
99	Role of protein kinase C-δ (PKC-Î) in the generation of the effects of IFN-α in chronic myelogenous leukemia cells. Experimental Hematology, 2005, 33, 550-557.	0.2	37
100	Interferons. Current Opinion in Oncology, 1995, 7, 560-565.	1.1	36
101	Signaling Via the Interferon-α Receptor in Chronic Myelogenous Leukemia Cells. Leukemia and Lymphoma, 2002, 43, 703-709.	0.6	36
102	The CrkL Adapter Protein Is Required for Type I Interferon-Dependent Gene Transcription and Activation of the Small G-Protein Rap1. Biochemical and Biophysical Research Communications, 2002, 291, 744-750.	1.0	36
103	Sprouty Proteins Are Negative Regulators of Interferon (IFN) Signaling and IFN-inducible Biological Responses. Journal of Biological Chemistry, 2012, 287, 42352-42360.	1.6	36
104	Mechanisms of Type-I Interferon Signal Transduction. BMB Reports, 2004, 37, 635-641.	1.1	36
105	Engagement of the CrkL adaptor in interferon $\hat{I}\pm$ signalling in BCR-ABL-expressing cells. British Journal of Haematology, 2001, 112, 327-336.	1.2	35
106	Regulation of Arsenic Trioxide-induced Cellular Responses by Mnk1 and Mnk2. Journal of Biological Chemistry, 2008, 283, 12034-12042.	1.6	35
107	Mnk kinases in cytokine signaling and regulation of cytokine responses. Biomolecular Concepts, 2012, 3, 127-139.	1.0	35
108	Targeting mTOR signaling pathways and related negative feedback loops for the treatment of acute myeloid leukemia. Cancer Biology and Therapy, 2015, 16, 648-656.	1.5	35

#	Article	IF	CITATIONS
109	Interferon signaling in cancer. Non-canonical pathways and control of intracellular immune checkpoints. Seminars in Immunology, 2019, 43, 101299.	2.7	35
110	Regulatory effects of a Mnk2-eIF4E feedback loop during mTORC1 targeting of human medulloblastoma cells. Oncotarget, 2014, 5, 8442-8451.	0.8	35
111	Targeting AMPK in the treatment of malignancies. Journal of Cellular Biochemistry, 2012, 113, 404-409.	1.2	34
112	The vav proto-oncogene product (p95 vav) interacts with the Tyk-2 protein tyrosine kinase. FEBS Letters, 1997, 403, 31-34.	1.3	33
113	Activation of Mitogen-activated Protein Kinase Kinase (MKK) 3 and MKK6 by Type I Interferons. Journal of Biological Chemistry, 2005, 280, 10001-10010.	1.6	33
114	An overview of the mTOR pathway as a target in cancer therapy. Expert Opinion on Therapeutic Targets, 2012, 16, 481-489.	1.5	33
115	Inhibition of p38α MAPK disrupts the pathological loop of proinflammatory factor production in the myelodysplastic syndrome bone marrow microenvironment. Leukemia and Lymphoma, 2008, 49, 1963-1975.	0.6	32
116	Exploiting the mammalian target of rapamycin pathway in hematologic malignancies. Current Opinion in Hematology, 2008, 15, 88-94.	1.2	32
117	Essential Role for Mnk Kinases in Type II Interferon (IFNγ) Signaling and Its Suppressive Effects on Normal Hematopoiesis. Journal of Biological Chemistry, 2011, 286, 6017-6026.	1.6	32
118	Pexmetinib: A Novel Dual Inhibitor of Tie2 and p38 MAPK with Efficacy in Preclinical Models of Myelodysplastic Syndromes and Acute Myeloid Leukemia. Cancer Research, 2016, 76, 4841-4849.	0.4	32
119	Understanding the organ tropism of metastatic breast cancer through the combination of liquid biopsy tools. European Journal of Cancer, 2021, 143, 147-157.	1.3	32
120	The novel combination of dual mTOR inhibitor AZD2014 and pan-PIM inhibitor AZD1208 inhibits growth in acute myeloid leukemia via HSF pathway suppression. Oncotarget, 2015, 6, 37930-37947.	0.8	32
121	Expression and Regulatory Effects of Murine Schlafen (Slfn) Genes in Malignant Melanoma and Renal Cell Carcinoma. Journal of Biological Chemistry, 2013, 288, 33006-33015.	1.6	31
122	Introduction: Interferon Signals: What Is Classical and What Is Nonclassical?. Journal of Interferon and Cytokine Research, 2005, 25, 732-732.	0.5	30
123	Regulation of Interferon-Dependent mRNA Translation of Target Genes. Journal of Interferon and Cytokine Research, 2014, 34, 289-296.	0.5	30
124	HDL nanoparticles targeting sonic hedgehog subtype medulloblastoma. Scientific Reports, 2018, 8, 1211.	1.6	30
125	Hematological manifestations of COVID-19. Leukemia and Lymphoma, 2020, 61, 2790-2798.	0.6	30
126	Glioblastoma as an age-related neurological disorder in adults. Neuro-Oncology Advances, 2021, 3, vdab125.	0.4	30

#	Article	IF	CITATIONS
127	Regulation of mammalian target of rapamycin and mitogen activated protein kinase pathways by BCR–ABL. Leukemia and Lymphoma, 2011, 52, 45-53.	0.6	29
128	Dual targeting of eIF4E by blocking MNK and mTOR pathways in leukemia. Cytokine, 2017, 89, 116-121.	1.4	29
129	Differential Response of Glioma Stem Cells to Arsenic Trioxide Therapy Is Regulated by MNK1 and mRNA Translation. Molecular Cancer Research, 2018, 16, 32-46.	1.5	29
130	Akt and mRNA translation by interferons. Cell Cycle, 2008, 7, 2112-2116.	1.3	28
131	Circulating microRNAs: promising biomarkers in aplastic anemia. Haematologica, 2017, 102, 1-2.	1.7	27
132	Engagement of the CrkL Adapter in Interleukin-5 Signaling in Eosinophils. Journal of Biological Chemistry, 2000, 275, 33167-33175.	1.6	26
133	Signalling Pathways Activated by All-trans-Retinoic Acid in Acute Promyelocytic Leukemia Cells. Leukemia and Lymphoma, 2004, 45, 2175-2185.	0.6	26
134	Growth suppressive cytokines and the AKT/mTOR pathway. Cytokine, 2009, 48, 138-143.	1.4	26
135	Deregulation of Interferon Signaling in Malignant Cells. Pharmaceuticals, 2010, 3, 406-418.	1.7	26
136	Identification and targeting of novel CDK9 complexes in acute myeloid leukemia. Blood, 2019, 133, 1171-1185.	0.6	26
137	Targeting of glioblastoma cell lines and glioma stem cells by combined PIM kinase and PI3K-p110α inhibition. Oncotarget, 2016, 7, 33192-33201.	0.8	26
138	Protein Kinase R as Mediator of the Effects of Interferon (IFN) γ and Tumor Necrosis Factor (TNF) α on Normal and Dysplastic Hematopoiesis. Journal of Biological Chemistry, 2011, 286, 27506-27514.	1.6	25
139	Interferon Î ³ (IFNÎ ³) Signaling via Mechanistic Target of Rapamycin Complex 2 (mTORC2) and Regulatory Effects in the Generation of Type II Interferon Biological Responses. Journal of Biological Chemistry, 2016, 291, 2389-2396.	1.6	25
140	Rapamycin Modulates Glucocorticoid Receptor Function, Blocks Atrophogene REDD1, and Protects Skin from SteroidÂAtrophy. Journal of Investigative Dermatology, 2018, 138, 1935-1944.	0.3	25
141	The Use of Serial Circulating Tumor DNA to Detect Resistance Alterations in Progressive Metastatic Breast Cancer. Clinical Cancer Research, 2021, 27, 1361-1370.	3.2	25
142	Activation of mammalian target of rapamycin and the p70 S6 kinase by arsenic trioxide in BCR-ABL–expressing cells. Molecular Cancer Therapeutics, 2006, 5, 2815-2823.	1.9	24
143	Direct Binding of Arsenic Trioxide to AMPK and Generation of Inhibitory Effects on Acute Myeloid Leukemia Precursors. Molecular Cancer Therapeutics, 2015, 14, 202-212.	1.9	24
144	Pharmacological mTOR targeting enhances the antineoplastic effects of selective PI3Kα inhibition in medulloblastoma. Scientific Reports, 2019, 9, 12822.	1.6	24

#	Article	IF	CITATIONS
145	Sirtuin 2–mediated deacetylation of cyclin-dependent kinase 9 promotes STAT1 signaling in type I interferon responses. Journal of Biological Chemistry, 2019, 294, 827-837.	1.6	24
146	Regulatory Effects of Programmed Cell Death 4 (PDCD4) Protein in Interferon (IFN)-Stimulated Gene Expression and Generation of Type I IFN Responses. Molecular and Cellular Biology, 2012, 32, 2809-2822.	1.1	23
147	Longitudinal Dynamics of Circulating Tumor Cells and Circulating Tumor DNA for Treatment Monitoring in Metastatic Breast Cancer. JCO Precision Oncology, 2021, 5, 943-952.	1.5	23
148	A Role for Mixed Lineage Kinases in Regulating Transcription Factor CCAAT/Enhancer-binding Protein-β-dependent Gene Expression in Response to Interferon-γ. Journal of Biological Chemistry, 2005, 280, 24462-24471.	1.6	21
149	Suppression of Interferon (IFN)-inducible Genes and IFN-mediated Functional Responses in BCR-ABL-expressing Cells. Journal of Biological Chemistry, 2008, 283, 10793-10803.	1.6	21
150	Arsenic Trioxide and the Phosphoinositide 3-Kinase/Akt Pathway in Chronic Lymphocytic Leukemia. Clinical Cancer Research, 2010, 16, 4311-4312.	3.2	20
151	Interferons and Their Antitumor Properties. Journal of Interferon and Cytokine Research, 2013, 33, 143-144.	0.5	20
152	Induction of autophagy by dual mTORC1-mTORC2 inhibition in BCR-ABL-expressing leukemic cells. Autophagy, 2010, 6, 966-967.	4.3	19
153	Critical Roles for Rictor/Sin1 Complexes in Interferon-dependent Gene Transcription and Generation of Antiproliferative Responses. Journal of Biological Chemistry, 2014, 289, 6581-6591.	1.6	19
154	Beyond autophagy: New roles for ULK1 in immune signaling and interferon responses. Cytokine and Growth Factor Reviews, 2016, 29, 17-22.	3.2	19
155	The Interferon Consensus Sequence Binding Protein (Icsbp/Irf8) Is Required for Termination of Emergency Granulopoiesis. Journal of Biological Chemistry, 2016, 291, 4107-4120.	1.6	19
156	Regulatory Effects of Ribosomal S6 Kinase 1 (RSK1) in IFNλ Signaling. Journal of Biological Chemistry, 2011, 286, 1147-1156.	1.6	17
157	IFN-γ–inducible antiviral responses require ULK1-mediated activation of MLK3 and ERK5. Science Signaling, 2018, 11, .	1.6	17
158	Performance of a novel Next Generation Sequencing circulating tumor DNA (ctDNA) platform for the evaluation of samples from patients with metastatic breast cancer (MBC). Critical Reviews in Oncology/Hematology, 2020, 145, 102856.	2.0	17
159	Combined PI3Kα-mTOR Targeting of Glioma Stem Cells. Scientific Reports, 2020, 10, 21873.	1.6	17
160	Expression of the IFNα receptor in hairy cell leukaemia. British Journal of Haematology, 1992, 82, 541-546.	1.2	16
161	Activation of Protein Kinase Cη by Type I Interferons. Journal of Biological Chemistry, 2009, 284, 10301-10314.	1.6	16
162	Next generation of mammalian target of rapamycin inhibitors for the treatment of cancer. Expert Opinion on Investigational Drugs, 2013, 22, 715-722.	1.9	16

#	Article	IF	CITATIONS
163	Essential Role for the Mnk Pathway in the Inhibitory Effects of Type I Interferons on Myeloproliferative Neoplasm (MPN) Precursors. Journal of Biological Chemistry, 2013, 288, 23814-23822.	1.6	16
164	Protein kinase C signalling in leukemia. Leukemia and Lymphoma, 2008, 49, 1255-1262.	0.6	15
165	BCR-ABL1-induced leukemogenesis and autophagic targeting by arsenic trioxide. Autophagy, 2013, 9, 93-94.	4.3	15
166	Regulation of leukemic cell differentiation and retinoid-induced gene expression by statins. Molecular Cancer Therapeutics, 2009, 8, 615-625.	1.9	14
167	Resveratrol enhances the suppressive effects of arsenic trioxide on primitive leukemic progenitors. Cancer Biology and Therapy, 2014, 15, 473-478.	1.5	14
168	The E3 ubiquitin ligase Triad1 influences development of Mll-Ell-induced acute myeloid leukemia. Oncogene, 2018, 37, 2532-2544.	2.6	14
169	Interferon α activates the tyrosine kinase Lyn in haemopoietic cells. British Journal of Haematology, 1998, 101, 446-449.	1.2	13
170	Antiviral Effects of Interferon-β are Enhanced in the Absence of the Translational Suppressor 4E-BP1 in Myocarditis Induced by Coxsackievirus B3. Antiviral Therapy, 2011, 16, 577-584.	0.6	13
171	Statin-dependent activation of protein kinase Cl̂´in acute promyelocytic leukemia cells and induction of leukemic cell differentiation. Leukemia and Lymphoma, 2012, 53, 1779-1784.	0.6	13
172	IFN-β-specific signaling via a unique IFNAR1 interaction. Nature Immunology, 2013, 14, 884-885.	7.0	13
173	Antileukemic properties of 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors. Leukemia and Lymphoma, 2013, 54, 2601-2605.	0.6	13
174	Slfn2 Regulates Type I Interferon Responses by Modulating the NF- <i>κ</i> B Pathway. Molecular and Cellular Biology, 2018, 38, .	1.1	13
175	Interferons. , 2005, 126, 45-68.		12
176	Inhibitory effects of SEL201 in acute myeloid leukemia. Oncotarget, 2019, 10, 7112-7121.	0.8	12
177	Regulatory effects of SKAR in interferon α signaling and its role in the generation of type I IFN responses. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11377-11382.	3.3	11
178	A simple, low-cost staining method for rapid-throughput analysis of tumor spheroids. BioTechniques, 2016, 60, 43-6.	0.8	11
179	Pre-clinical evidence of PIM kinase inhibitor activity in BCR-ABL1 unmutated and mutated Philadelphia chromosome-positive (Ph+) leukemias. Oncotarget, 2015, 6, 33206-33216.	0.8	11
180	Regulation of the kinase RSK1 by arsenic trioxide and generation of antileukemic responses. Cancer Biology and Therapy, 2013, 14, 411-416.	1.5	10

#	Article	IF	CITATIONS
181	Regulatory Effects of Sestrin 3 (SESN3) in BCR-ABL Expressing Cells. PLoS ONE, 2013, 8, e78780.	1.1	10
182	Potent Antineoplastic Effects of Combined PI3Kα–MNK Inhibition in Medulloblastoma. Molecular Cancer Research, 2019, 17, 1305-1315.	1.5	10
183	Arsenic Trioxide-Dependent Activation of Thousand-and-One Amino Acid Kinase 2 and Transforming Growth Factor-β-Activated Kinase 1. Molecular Pharmacology, 2010, 77, 828-835.	1.0	9
184	Genomic Landscape of Advanced Solid Tumors in Circulating Tumor DNA and Correlation With Tissue Sequencing: A Single Institution's Experience. JCO Precision Oncology, 2022, , .	1.5	9
185	Schlafen 5 as a novel therapeutic target in pancreatic ductal adenocarcinoma. Oncogene, 2021, 40, 3273-3286.	2.6	8
186	Discovery of a signaling feedback circuit that defines interferon responses in myeloproliferative neoplasms. Nature Communications, 2022, 13, 1750.	5.8	8
187	STAT Activation in Malignancies: Roles in Tumor Progression and in the Generation of Antineoplastic Effects of IFNs. Journal of Interferon and Cytokine Research, 2013, 33, 181-188.	0.5	7
188	Discovery of novel Mnk inhibitors using mutationâ€based inducedâ€fit virtual highâ€throughput screening. Chemical Biology and Drug Design, 2019, 94, 1813-1823.	1.5	7
189	Inhibitory effects of Tomivosertib in acute myeloid leukemia. Oncotarget, 2021, 12, 955-966.	0.8	7
190	Abnormalities in Th17 T cells in aplastic anemia. Blood, 2010, 116, 4039-4040.	0.6	6
191	Evolving Therapeutic Strategies for the Classic Philadelphia-Negative Myeloproliferative Neoplasms. EBioMedicine, 2016, 3, 17-25.	2.7	6
192	Central Regulatory Role for SIN1 in Interferon γ (IFNγ) Signaling and Generation of Biological Responses. Journal of Biological Chemistry, 2017, 292, 4743-4752.	1.6	6
193	Cell-directed aptamer therapeutic targeting for cancers including those within the central nervous system. Oncolmmunology, 2022, 11, 2062827.	2.1	6
194	Hairy cell leukaemia: The role of alpha interferon. European Journal of Cancer & Clinical Oncology, 1991, 27, S53-S57.	0.9	5
195	Acute myeloid leukemia: potential for new therapeutic approaches targeting mRNA translation pathways. International Journal of Hematologic Oncology, 2013, 2, 243-250.	0.7	5
196	Use of mTOR inhibitors in the treatment of malignancies. Expert Opinion on Pharmacotherapy, 2014, 15, 979-990.	0.9	5
197	Relapse of Hodgkin's Disease After 14 Years of Complete Remission. Leukemia and Lymphoma, 1990, 3, 223-226.	0.6	4
198	PD1 and PDL1 upregulation and survival after decitabine treatment in lower risk MDS. Leukemia and Lymphoma, 2017, 58, 764-765.	0.6	4

#	Article	IF	CITATIONS
199	Mechanisms of BCR–ABL leukemogenesis and novel targets for the treatment of chronic myeloid leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia. Leukemia and Lymphoma, 2011, 52, 2-3.	0.6	3
200	Spontaneous remission in congenital leukemia. Leukemia and Lymphoma, 2018, 59, 2271-2272.	0.6	3
201	ULK1 in type I interferon response. Oncotarget, 2015, 6, 24586-24587.	0.8	3
202	Innate Immune Mechanisms and Immunotherapy of Myeloid Malignancies. Biomedicines, 2021, 9, 1631.	1.4	3
203	MTHFR polymorphisms and the development of acute leukemia: Does it really matter?. Leukemia and Lymphoma, 2006, 47, 2002-2003.	0.6	2
204	Another tyrosine kinase inhibitor-resistance mutation within the BCR-ABL kinase domain: chasing our tails?. Leukemia and Lymphoma, 2017, 58, 1526-1527.	0.6	2
205	Transforming growth factor superfamily ligands and links to tumorigenesis. Leukemia and Lymphoma, 2018, 59, 1282-1283.	0.6	2
206	An aberrantly sustained emergency granulopoiesis response accelerates postchemotherapy relapse in MLL1-rearranged acute myeloid leukemia in mice. Journal of Biological Chemistry, 2020, 295, 9663-9675.	1.6	2
207	New insights into malignant cell survival mechanisms in medulloblastoma. Cancer Cell & Microenvironment, 2014, 1, .	0.8	2
208	Mesenchymal stromal cells and interferon α (IFNα) in cancer immunotherapy. Translational Cancer Research, 2016, 5, S1039-S1043.	0.4	2
209	Outcomes of Cancer Patients with COVID-19 in a Hospital System in the Chicago Metropolitan Area. Cancers, 2022, 14, 2209.	1.7	2
210	Interferon-inducible genes and aplastic anemia. Blood, 2006, 107, 2-3.	0.6	1
211	Prospects for mTOR targeting in adult T cell leukemia. Leukemia and Lymphoma, 2009, 50, 525-526.	0.6	1
212	Pediatric acute lymphoblastic leukemia: the missing pieces in risk and survival. Leukemia and Lymphoma, 2014, 55, 2226-2227.	0.6	1
213	Catalytic mammalian target of rapamycin inhibitors as antineoplastic agents. Leukemia and Lymphoma, 2015, 56, 2518-2523.	0.6	1
214	Whole-exome sequencing for relapse prediction in patients discontinuing TKI treatment in chronic myeloid leukemia. Leukemia and Lymphoma, 2016, 57, 1503-1504.	0.6	1
215	Impact of myosteatosis in survivors of childhood acute lymphoblastic leukemia. Leukemia and Lymphoma, 2019, 60, 3097-3098.	0.6	1
216	Glutathione Depletion Enhances Arsenic Trioxide-Induced Apoptosis in Lymphoma Cells through Mitochondrial and Caspase-Independent Mechanisms Blood, 2009, 114, 2708-2708.	0.6	1

#	Article	IF	CITATIONS
217	Abstract P1-02-11: Somatic alterations and PD-L1 positivity in advanced breast cancer. Cancer Research, 2022, 82, P1-02-11-P1-02-11.	0.4	1
218	Regulation of IFNα-induced expression of the short ACE2 isoform by ULK1. Molecular Immunology, 2022, 147, 1-9.	1.0	1
219	Tyrosine kinase inhibition in acute myeloid leukemia. Leukemia and Lymphoma, 2013, 54, 1351-1352.	0.6	0
220	Overcoming treatment challenges in imatinib-resistant chronic myelogenous leukemia. Leukemia and Lymphoma, 2015, 56, 1581-1582.	0.6	0
221	Rituximab and glucocorticoids: friends or foes? It is all about timing. Leukemia and Lymphoma, 2015, 56, 2237-2238.	0.6	0
222	Synergism between arsenic trioxide and aclacinomycin in acute myeloid leukemia. Leukemia and Lymphoma, 2015, 56, 3010-3011.	0.6	0
223	SNPing away to individualize induction therapy for acute myelogenous leukemia. Leukemia and Lymphoma, 2016, 57, 742-743.	0.6	0
224	Implications of high EVI1 expression in high-risk myelodysplastic syndromes. Leukemia and Lymphoma, 2018, 59, 2765-2766.	0.6	0
225	Natural killer cell activity and survival after azacitidine treatment in high-risk MDS. Leukemia and Lymphoma, 2019, 60, 2343-2344.	0.6	0
226	Abstract PS2-08: Identification of incidental putative germline variants in circulating tumor DNA. , 2021, , .		0
227	Interferon maintenance for prevention of relapse in favorable risk AML?. Leukemia and Lymphoma, 2021, 62, 1-2.	0.6	0
228	Targeting the mTOR Pathway Suppresses the Growth of Acute Myeloid Leukemia (AML) Progenitors and Enhances Arsenic Trioxide Induced Antileukemic Responses Blood, 2006, 108, 1898-1898.	0.6	0
229	Statins. , 2011, , 3502-3503.		0
230	Circulating tumor cells enumeration (CTCs) and circulating tumor DNA (ctDNA): Clinical and molecular features of "rapidly progressing―stage IV disease (Stage IVprog) Journal of Clinical Oncology, 2018, 36, 12040-12040.	0.8	0
231	Vitamin D and acute promyelocytic leukemia. Leukemia and Lymphoma, 2006, 47, 581.	0.6	0
232	Abstract P2-02-05: Dynamic circulating tumor cell changes in enumeration and HER2 expression during systemic therapy for metastatic breast cancer. Cancer Research, 2022, 82, P2-02-05-P2-02-05.	0.4	0
233	Abstract PD14-01: Comprehensive molecular characterization of patients with metastatic invasive lobular carcinoma (ILC): Using <i>real-world</i> data to describe this unique clinical entity. Cancer Research, 2022, 82, PD14-01-PD14-01.	0.4	0
234	Abstract P2-01-04: Esr1 hotspot mutations in circulating tumor DNA mutation are associated with endocrine therapy resistance in metastatic breast cancer. Cancer Research, 2022, 82, P2-01-04-P2-01-04.	0.4	0

#	Article	IF	CITATIONS
235	Abstract P2-01-08: <i>Esr1</i> Y537 mutations are associated with increased baseline circulating tumor cells enumeration for patients with estrogen receptor positive metastatic breast cancer. Cancer Research, 2022, 82, P2-01-08-P2-01-08.	0.4	0
236	Abstract LB117: Pilot study to identify live circulating tumor cells (CTCs) in metastatic breast cancer (MBC) by application of a novel microfluidic workflow system and flow cytometry. Cancer Research, 2022, 82, LB117-LB117.	0.4	0
237	Abstract 2548: The central nervous system immune cell interactome is a function of cancer lineage, tumor microenvironment and STAT3 expression. Cancer Research, 2022, 82, 2548-2548.	0.4	Ο