Heng-Shan Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/705638/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ce(OTf) ₃ -Catalyzed [3 + 2] Cycloaddition of Azides with Nitroolefins: Regioselective Synthesis of 1,5-Disubstituted 1,2,3-Triazoles. Journal of Organic Chemistry, 2014, 79, 4463-4469.	3.2	117
2	Samarium(III)-Catalyzed C(sp ³)–H Bond Activation: Synthesis of Indolizines <i>via</i> C–C and C–N Coupling between 2-Alkylazaarenes and Propargylic Alcohols. Organic Letters, 2014, 16, 580-583.	4.6	96
3	Electrochemical Difunctionalization of Olefines: Access to Selenomethylâ€Substituted Cyclic Ethers or Lactones. Advanced Synthesis and Catalysis, 2020, 362, 506-511.	4.3	96
4	Antiviral Matrine-Type Alkaloids from the Rhizomes of <i>Sophora tonkinensis</i> . Journal of Natural Products, 2015, 78, 1683-1688.	3.0	93
5	Copper-Catalyzed Decarboxylative/Click Cascade Reaction: Regioselective Assembly of 5-Selenotriazole Anticancer Agents. Organic Letters, 2018, 20, 925-929.	4.6	83
6	Electrochemically enabled chemoselective sulfonylation and hydrazination of indoles. Green Chemistry, 2019, 21, 3807-3811.	9.0	76
7	Combretastatin A-4 Analogue: A Dual-Targeting and Tubulin Inhibitor Containing Antitumor Pt(IV) Moiety with a Unique Mode of Action. Bioconjugate Chemistry, 2016, 27, 2132-2148.	3.6	60
8	Design, synthesis and inÂvitro evaluation of novel ursolic acid derivatives as potential anticancer agents. European Journal of Medicinal Chemistry, 2015, 95, 435-452.	5.5	59
9	Synthesis and antitumor activities of novel α-aminophosphonates dehydroabietic acid derivatives. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 5283-5289.	2.2	55
10	Design, synthesis, and biological evaluation of novel quinazolinyl-diaryl urea derivatives as potential anticancer agents. European Journal of Medicinal Chemistry, 2016, 107, 12-25.	5.5	52
11	Electrochemical Synthesis of 3,5â€Disubstitutedâ€1,2,4â€thiadiazoles through NH ₄ lâ€Mediated Dimerization of Thioamides. Advanced Synthesis and Catalysis, 2018, 360, 4043-4048.	4.3	49
12	Synthesis and biological evaluation of novel aniline-derived asiatic acid derivatives as potential anticancer agents. European Journal of Medicinal Chemistry, 2014, 86, 175-188.	5.5	48
13	Palladium-Metalated Porous Organic Polymers as Recyclable Catalysts for the Chemioselective Synthesis of Thiazoles from Thiobenzamides and Isonitriles. Organic Letters, 2018, 20, 2494-2498.	4.6	45
14	Regioselective Synthesis of βâ€Aryl Enaminones and 1,4,5―Trisubstituted 1,2,3â€Triazoles from Chalcones and Benzyl Azides. Advanced Synthesis and Catalysis, 2014, 356, 3347-3355.	4.3	43
15	Palladium-metalated porous organic polymers as recyclable catalysts for chemoselective decarbonylation of aldehydes. Chemical Communications, 2018, 54, 8446-8449.	4.1	41
16	Clerodane Diterpenoid Glucosides from the Stems of <i>Tinospora sinensis</i> . Journal of Natural Products, 2017, 80, 975-982.	3.0	40
17	Synthesis and pharmacological evaluation of dehydroabietic acid thiourea derivatives containing bisphosphonate moiety as an inducer of apoptosis. European Journal of Medicinal Chemistry, 2016, 108, 381-391.	5.5	39
18	Antitumor lignanamides from the aerial parts of Corydalis saxicola. Phytomedicine, 2016, 23, 1599-1609.	5.3	38

#	Article	IF	CITATIONS
19	Anticancer Platinum(IV) Prodrugs Containing Monoaminophosphonate Ester as a Targeting Group Inhibit Matrix Metalloproteinases and Reverse Multidrug Resistance. Bioconjugate Chemistry, 2017, 28, 1305-1323.	3.6	38
20	Transition-metal-free C–N and C–C formation: synthesis of benzo[4,5]imidazo[1,2- <i>a</i>]pyridines and 2-pyridones from ynones. Green Chemistry, 2018, 20, 2007-2012.	9.0	38
21	Catalyst-free synthesis of fused 1,2,3-triazole and isoindoline derivatives via an intramolecular azide–alkene cascade reaction. Green Chemistry, 2017, 19, 656-659.	9.0	36
22	Silver-mediated C–H bond functionalization: one-pot to construct substituted indolizines from 2-alkylazaarenes with alkynes. Tetrahedron, 2014, 70, 6717-6722.	1.9	34
23	Alkaloids from Tetrastigma hemsleyanum and Their Anti-Inflammatory Effects on LPS-Induced RAW264.7 Cells. Molecules, 2018, 23, 1445.	3.8	33
24	A facile synthesis of 2,5-disubstituted oxazoles via a copper-catalyzed cascade reaction of alkenes with azides. Chemical Communications, 2015, 51, 17772-17774.	4.1	32
25	Promoting antitumor efficacy by suppressing hypoxia <i>via</i> nano self-assembly of two irinotecan-based dual drug conjugates having a HIF-1α inhibitor. Journal of Materials Chemistry B, 2019, 7, 5352-5362.	5.8	31
26	Pt(IV) prodrugs containing microtubule inhibitors displayed potent antitumor activity and ability to overcome cisplatin resistance. European Journal of Medicinal Chemistry, 2018, 156, 666-679.	5.5	30
27	Photocatalytic Construction of S–S and C–S Bonds Promoted by Acridinium Salt: An Unexpected Pathway To Synthesize 1,2,4-Dithiazoles. Organic Letters, 2018, 20, 4819-4823.	4.6	30
28	Transition Metalâ€Free Synthesis of 3â€Alkynylpyrroleâ€2 arboxylates <i>via</i> Michael Addition/Intramolecular Cyclodehydration. Advanced Synthesis and Catalysis, 2016, 358, 1897-1902.	4.3	29
29	Bifunctional Naphthoquinone Aromatic Amide-Oxime Derivatives Exert Combined Immunotherapeutic and Antitumor Effects through Simultaneous Targeting of Indoleamine-2,3-dioxygenase and Signal Transducer and Activator of Transcription 3. Journal of Medicinal Chemistry, 2020, 63, 1544-1563.	6.4	29
30	Palladium-Catalyzed Synthesis of 5-Iminopyrrolones through Isocyanide Double Insertion Reaction with Terminal Alkynes and Water. Journal of Organic Chemistry, 2016, 81, 11813-11818.	3.2	28
31	Dual-targeting antitumor hybrids derived from Pt(IV) species and millepachine analogues. European Journal of Medicinal Chemistry, 2018, 148, 1-25.	5.5	28
32	Antioxidant activities of Liquidambar formosana Hance leaf extracts. Medicinal Chemistry Research, 2010, 19, 166-176.	2.4	26
33	An Unexpected Domino Reaction of βâ€Keto Sulfones with Acetylene Ketones Promoted by Base: Facile Synthesis of 3(2 <i>H</i>)â€Furanones and Sulfonylbenzenes. Advanced Synthesis and Catalysis, 2017, 359, 4025-4035.	4.3	26
34	Platinum-Based Modification of Styrylbenzylsulfones as Multifunctional Antitumor Agents: Targeting the RAS/RAF Pathway, Enhancing Antitumor Activity, and Overcoming Multidrug Resistance. Journal of Medicinal Chemistry, 2020, 63, 186-204.	6.4	26
35	Two new diterpene derivatives from Euphorbia lunulata Bge and their anti-proliferative activities. FìtoterapìA¢, 2014, 96, 33-38.	2.2	25
36	Synthesis, antiproliferative and apoptosis-inducing effects of novel asiatic acid derivatives containing α-aminophosphonates. RSC Advances, 2016, 6, 62890-62906.	3.6	25

#	Article	IF	CITATIONS
37	Synthesis of Polysubstituted Imidazoles and Pyridines <i>via</i> Samarium(III) Triflateâ€Catalyzed [2+2+1] and [4+2] Annulations of Unactivated Aromatic Alkenes with Azides. Advanced Synthesis and Catalysis, 2015, 357, 3229-3241.	4.3	23
38	Glycyrrhetinic acid derivatives containing aminophosphonate ester species as multidrug resistance reversers that block the NF-κB pathway and cell proliferation. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 3700-3707.	2.2	23
39	New Tyramine- and Aporphine-Type Alkamides with NO Release Inhibitory Activities from <i>Piper puberulum</i> . Journal of Natural Products, 2021, 84, 1316-1325.	3.0	23
40	Design, synthesis and inÂvitro evaluation of novel dehydroabietic acid derivatives containing a dipeptide moiety as potential anticancer agents. European Journal of Medicinal Chemistry, 2015, 89, 370-385.	5.5	22
41	Acid-catalyzed tandem reaction for the synthesis of pyridine derivatives via Cî€C/C(sp ³)–N bond cleavage of enones and primary amines. RSC Advances, 2017, 7, 13123-13129.	3.6	22
42	Mappianines Aâ^'E, structurally diverse monoterpenoid indole alkaloids from Mappianthus iodoides. Phytochemistry, 2018, 145, 68-76.	2.9	22
43	Palladium-Catalyzed Three-Component Reaction: A Novel Method for the Synthesis of <i>N</i> -Acyl Propiolamides. Organic Letters, 2018, 20, 7117-7120.	4.6	21
44	Design, synthesis and antitumor evaluation of new 1,8-naphthalimide derivatives targeting nuclear DNA. European Journal of Medicinal Chemistry, 2021, 210, 112951.	5.5	21
45	Antioxidant activity of alcoholic extract of Agrimonia pilosa Ledeb. Medicinal Chemistry Research, 2010, 19, 448-461.	2.4	20
46	TEMPO-catalyzed synthesis of 5-substituted isoxazoles from propargylic ketones and TMSN ₃ . RSC Advances, 2016, 6, 58988-58993.	3.6	20
47	Cytotoxic triterpenoid saponins from Lysimachia foenum-graecum. Phytochemistry, 2017, 136, 165-174.	2.9	19
48	Regioselective Synthesis of Selenide Ethers through a Decarboxylative Coupling Reaction. Advanced Synthesis and Catalysis, 2017, 359, 3950-3961.	4.3	19
49	Atom-Economic Synthesis of 4-Pyrones from Diynones and Water. Molecules, 2017, 22, 109.	3.8	19
50	Synthesis and discovery of asiatic acid based 1,2,3-triazole derivatives as antitumor agents blocking NF-κB activation and cell migration. MedChemComm, 2019, 10, 584-597.	3.4	19
51	Withanolides from <i>Physalis alkekengi</i> var. <i>francheti</i> . Helvetica Chimica Acta, 2008, 91, 2284-2291.	1.6	18
52	New inhibitors of matrix metalloproteinases 9 (MMP-9): Lignans from Selaginella moellendorffii. Fìtoterapìâ, 2018, 130, 281-289.	2.2	18
53	Discovery of antitumor ursolic acid long-chain diamine derivatives as potent inhibitors of NF-κB. Bioorganic Chemistry, 2018, 79, 265-276.	4.1	18
54	Graphene oxide as a green carbon material for cross-coupling of indoles with ethers <i>via</i> oxidation and the Friedel–Crafts reaction. Organic Chemistry Frontiers, 2019, 6, 3615-3619.	4.5	18

#	Article	lF	CITATIONS
55	Platinum(IV) complexes conjugated with chalcone analogs as dual targeting anticancer agents: In vitro and in vivo studies. Bioorganic Chemistry, 2020, 105, 104430.	4.1	17
56	Lung cancer and matrix metalloproteinases inhibitors of polyphenols from Selaginella tamariscina with suppression activity of migration. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 2413-2417.	2.2	16
57	Anti-inflammatory activity of isobutylamides from zanthoxylum nitidum var. tomentosum. Fìtoterapìâ, 2020, 142, 104486.	2.2	16
58	Cytisine-type alkaloids and flavonoids from the rhizomes of <i>Sophora tonkinensis</i> . Journal of Asian Natural Products Research, 2016, 18, 429-435.	1.4	15
59	Selagintamarlin A: A Selaginellin Analogue Possessing a 1 <i>H</i> -2-Benzopyran Core from <i>Selaginella tamariscina</i> . ACS Omega, 2017, 2, 2178-2183.	3.5	15
60	Praseodymium(III)-Catalyzed Regioselective Synthesis of C ₃ -N-Substituted Coumarins with Coumarins and Azides. Journal of Organic Chemistry, 2017, 82, 9006-9011.	3.2	15
61	Synthesis, mechanisms of action, and toxicity of novel aminophosphonates derivatives conjugated irinotecan inÂvitro and inÂvivo as potent antitumor agents. European Journal of Medicinal Chemistry, 2020, 189, 112067.	5.5	15
62	Antioxidant activity and inhibition effect on the growth of human colon carcinoma (HT-29) cells of esculetin from Cortex Fraxini. Medicinal Chemistry Research, 2011, 20, 968-974.	2.4	14
63	Quassinoids with Insecticidal Activity against <i>Diaphorina citri</i> Kuwayama and Neuroprotective Activities from <i>Picrasma quassioides</i> . Journal of Agricultural and Food Chemistry, 2020, 68, 117-127.	5.2	14
64	Microwave-assisted synthesis and evaluation of naphthalimides derivatives as free radical scavengers. Medicinal Chemistry Research, 2011, 20, 752-759.	2.4	13
65	Side chain-functionalized aniline-derived ursolic acid derivatives as multidrug resistance reversers that block the nuclear factor-kappa B (NF-lºB) pathway and cell proliferation. MedChemComm, 2017, 8, 1421-1434.	3.4	13
66	16-O-caffeoyl-16-hydroxylhexadecanoic acid, a medicinal plant-derived phenylpropanoid, induces apoptosis in human hepatocarcinoma cells through ROS-dependent endoplasmic reticulum stress. Phytomedicine, 2018, 41, 33-44.	5.3	13
67	NF-κB inhibitory and cytotoxic activities of hexacyclic triterpene acid constituents from Glechoma longituba. Phytomedicine, 2019, 63, 153037.	5.3	13
68	Inhibition potential of phenolic constituents from the aerial parts of <i>Tetrastigma hemsleyanum</i> against soluble epoxide hydrolase and nitric oxide synthase. Journal of Enzyme Inhibition and Medicinal Chemistry, 2019, 34, 753-760.	5.2	13
69	Electrochemical α-methoxymethylation and aminomethylation of propiophenones using methanol as a green C1 source. Organic Chemistry Frontiers, 2020, 7, 2399-2404.	4.5	13
70	Nitidumpeptins A and B, Cyclohexapeptides Isolated from <i>Zanthoxylum nitidum</i> var. <i>tomentosum</i> : Structural Elucidation, Total Synthesis, and Antiproliferative Activity in Cancer Cells. Journal of Organic Chemistry, 2021, 86, 1462-1470.	3.2	13
71	Organocatalytic Three-Component Acyldifluoromethylation of Vinylarenes via <i>N</i> -Heterocyclic Carbene-Catalyzed Radical Relay. Organic Letters, 2022, 24, 4840-4844.	4.6	13
72	The nonproton ligand of acid-sensing ion channel 3 activates mollusk-specific FaNaC channels via a mechanism independent of the native FMRFamide peptide. Journal of Biological Chemistry, 2017, 292, 21662-21675.	3.4	11

#	Article	IF	CITATIONS
73	A pentacyclic triterpene derivative possessing polyhydroxyl ring A suppresses growth of HeLa cells by reactive oxygen species-dependent NF-κB pathway. European Journal of Pharmacology, 2018, 838, 157-169.	3.5	11
74	Five 11α, 12α-epoxy pentacyclic triterpenoid saponins with antithrombus activities from Glechoma longituba. Fìtoterapìâ, 2019, 138, 104345.	2.2	11
75	The neurotrophic and antineuroinflammatory effects of phenylpropanoids from Zanthoxylum nitidum var. tomentosum (Rutaceae). FĬtoterapìâ, 2021, 153, 104990.	2.2	11
76	Antioxidant activities and transition metal ion chelating studies of some hydroxyl Schiff base derivatives. Medicinal Chemistry Research, 2012, 21, 1341-1346.	2.4	10
77	Synthesis and biological evaluation of terminal functionalized thiourea-containing dipeptides as antitumor agents. RSC Advances, 2017, 7, 8866-8878.	3.6	10
78	Catalyst- and solvent-free approach to 2-arylated quinolines via [5 + 1] annulation of 2-methylquinolines with diynones. RSC Advances, 2018, 8, 4584-4587.	3.6	10
79	Oleanane-type triterpenoid saponins from Lysimachia fortunei Maxim. Phytochemistry, 2018, 147, 140-146.	2.9	10
80	Four New 1,4â€Benzoquinone Derivatives and One New Coumarin Isolated from <i>Ardisia gigantifolia</i> . Helvetica Chimica Acta, 2010, 93, 249-256.	1.6	9
81	Sc(OTf) ₃ -mediated 1,3-dipolar cycloaddition–ring cleavage–rearrangement: a highly stereoselective access to Z-β-enaminonitriles. Organic and Biomolecular Chemistry, 2015, 13, 513-519.	2.8	9
82	Synthesis of fused tricyclic indolizines by intramolecular silver-mediated double cyclization of 2-(pyridin-2-yl)acetic acid propargyl esters. RSC Advances, 2017, 7, 24011-24014.	3.6	9
83	Altered allostery of the left flipper domain underlies the weak ATP response of rat P2X5 receptors. Journal of Biological Chemistry, 2019, 294, 19589-19603.	3.4	9
84	Synthesis and biological evaluation of novel millepachine derivative containing aminophosphonate ester species as novel anti-tubulin agents. Bioorganic Chemistry, 2020, 94, 103486.	4.1	9
85	Exploring the Toxicology of Depleted Uranium with <i>Caenorhabditis elegans</i> . ACS Omega, 2020, 5, 12119-12125.	3.5	9
86	New enantiomeric lignans and new meroterpenoids with nitric oxide release inhibitory activity from Piper puberulum. Bioorganic Chemistry, 2022, 119, 105522.	4.1	8
87	Diterpenoids and triterpenoids from Triadica rotundifolia and their effects on microglial nitric oxide production. Bioorganic Chemistry, 2020, 105, 104332.	4.1	7
88	Cannabidiol-dihydroartemisinin conjugates for ameliorating neuroinflammation with reduced cytotoxicity. Bioorganic and Medicinal Chemistry, 2021, 39, 116131.	3.0	7
89	Simultaneous reduction of aldehyde group to hydroxymethyl group in palladium-catalyzed Suzuki cross-coupling reaction. Chemical Research in Chinese Universities, 2014, 30, 614-618.	2.6	6
90	Glechomanamides A–C, Germacrane Sesquiterpenoids with an Unusual Δ ⁸ -7,12-Lactam Moiety from <i>Salvia scapiformis</i> and Their Antiangiogenic Activity. Journal of Natural Products, 2019, 82, 3056-3064.	3.0	6

#	Article	IF	CITATIONS
91	Flavonol glycosides and phenylpropanoid glycosides with inhibitory effects on microglial nitric oxide production from Neoshirakia japonica. Fìtoterapìâ, 2021, 151, 104877.	2.2	6
92	Preparation of Magnetic Microsphereâ€Gold Nanoparticleâ€Immobilized Enzyme Batch Reactor and Its Application to Enzyme Inhibitor Screening in Natural Extracts by Capillary Electrophoresis. Chinese Journal of Chemistry, 2017, 35, 943-948.	4.9	5
93	Synthesis of imidazo[1,2- <i>c</i>]thiazoles through Pd-catalyzed bicyclization of <i>tert</i> -butyl isonitrile with thioamides. Organic and Biomolecular Chemistry, 2019, 17, 8403-8407.	2.8	5
94	Chemical constituents from the barks of <i>Melia azedarach</i> and their PTP1B inhibitory activity. Natural Product Research, 2021, 35, 4442-4447.	1.8	5
95	A new phenolic acid from Zanthoxylum nitidum var. tomentosum (Rutaceae) and its chemotaxonomic significance. Biochemical Systematics and Ecology, 2021, 99, 104351.	1.3	5
96	(±)-Corysaxicolaine A: a pair of antitumor enantiomeric alkaloid dimers from <i>Corydalis saxicola</i> . Organic and Biomolecular Chemistry, 2022, 20, 1396-1400.	2.8	5
97	3 <i>α</i> ,19-Dihydroxyl- <i>ent</i> -pimara-8(14),15-diene, a new diterpenoid from the rhizomes of <i>Ricinus communi</i> s. Journal of Asian Natural Products Research, 2019, 21, 522-527.	1.4	4
98	Acetylated Rhamnose Triterpenoid Saponins from <i>Glechoma longituba</i> Analyzed by LCâ€Qâ€TOFMS. Chemistry and Biodiversity, 2021, 18, e2100272.	2.1	4
99	Chebulic acid derivatives from Balakata baccata and their antineuroinflammatory and antioxidant activities. Bioorganic Chemistry, 2021, 116, 105332.	4.1	4
100	Cytotoxic activities against MCF-7 and MDA-MB-231, antioxidant and <i>α</i> -glucosidase inhibitory activities of <i>Trachelospermum jasminoides</i> extracts <i>inÂvitro</i> . Biotechnology and Biotechnological Equipment, 2019, 33, 1671-1679.	1.3	3
101	Potential anti-diabetic isoprenoids and a long-chain δ-lactone from frangipani (Plumeria rubra). Fìtoterapìâ, 2020, 146, 104684.	2.2	3
102	Sesquiterpenoid Compounds from <i>Curcuma kwangsiensis</i> . Chemistry and Biodiversity, 2019, 16, e1900123.	2.1	2
103	Light-driven selective aerobic oxidation of (iso)quinoliniums and related heterocycles. RSC Advances, 2021, 11, 16246-16251.	3.6	2
104	Sc(OTf) ₃ -Catalyzed 1,6-Conjugate Addition of Thiols to <i>δ</i> -CF ₃ - <i>δ</i> -aryl-disubstituted <i>para</i> -Quinone Methides: Efficient Construction of Diarylmethane Thioethers. Chinese Journal of Organic Chemistry, 2021, 41, 3134.	1.3	2
105	Tuning the Photophysical Properties of Cyclometalated Ir(III) Complexes by a Trifluoroacetyl Group. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2012, 67, 213-218.	0.7	1
106	Novel Cyclometalated Iridium(III) Xanthate Complexes and Their Phosphorescence Behavior in the Presence of Metal Ions. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2012, 67, 865-871.	0.7	1