Malcolm J W Povey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7056344/publications.pdf

Version: 2024-02-01

66343 51608 7,904 137 42 86 citations h-index g-index papers 139 139 139 7611 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). Journal of Nanoparticle Research, 2007, 9, 479-489.	1.9	1,229
2	Variables selection methods in near-infrared spectroscopy. Analytica Chimica Acta, 2010, 667, 14-32.	5.4	853
3	ZnO nanofluids – A potential antibacterial agent. Progress in Natural Science: Materials International, 2008, 18, 939-944.	4.4	396
4	Mechanistic investigation into antibacterial behaviour of suspensions of ZnO nanoparticles against E. coli. Journal of Nanoparticle Research, 2010, 12, 1625-1636.	1.9	393
5	Ultrasound techniques for characterizing colloidal dispersions. Reports on Progress in Physics, 2005, 68, 1541-1637.	20.1	236
6	Creaming and Flocculation of Oil-in-Water Emulsions Containing Sodium Caseinate. Journal of Colloid and Interface Science, 1997, 185, 515-529.	9.4	228
7	A study on the primary and secondary nucleation of ice by power ultrasound. Ultrasonics, 2005, 43, 227-230.	3.9	227
8	The sonocrystallisation of ice in sucrose solutions: primary and secondary nucleation. Ultrasonics, 2003, 41, 595-604.	3.9	188
9	Scattering of ultrasound by emulsions. Journal Physics D: Applied Physics, 1989, 22, 38-47.	2.8	158
10	A colorimetric hydrogen sulfide sensor based on gellan gum-silver nanoparticles bionanocomposite for monitoring of meat spoilage in intelligent packaging. Food Chemistry, 2019, 290, 135-143.	8.2	153
11	Particle-Stabilizing Effects of Flavonoids at the Oilâ^'Water Interface. Journal of Agricultural and Food Chemistry, 2011, 59, 2636-2645.	5. 2	140
12	ACOUSTIC ENVELOPE DETECTOR FOR CRISPNESS ASSESSMENT OF BISCUITS. Journal of Texture Studies, 2005, 36, 139-156.	2.5	133
13	Ultrasonics in food engineering. Part I: Introduction and experimental methods. Journal of Food Engineering, 1988, 8, 217-245.	5.2	128
14	Natural Biomaterial-Based Edible and pH-Sensitive Films Combined with Electrochemical Writing for Intelligent Food Packaging. Journal of Agricultural and Food Chemistry, 2018, 66, 12836-12846.	5.2	123
15	Effects of pH on the ability of flavonoids to act as Pickering emulsion stabilizers. Colloids and Surfaces B: Biointerfaces, 2012, 92, 84-90.	5.0	114
16	Crispness assessment of roasted almonds by an integrated approach to texture description: texture, acoustics, sensory and structure. Journal of Chemometrics, 2006, 20, 311-320.	1.3	112
17	Ultrasonic inactivation of Bacillus α-amylase. I. effect of gas content and emitting face of probe. Ultrasonics Sonochemistry, 2008, 15, 133-142.	8.2	109
18	Effect of Emulsifier Type on the Crystallization Kinetics of Oil-in-Water Emulsions Containing a Mixture of Solid and Liquid Droplets. Journal of Colloid and Interface Science, 1993, 160, 293-297.	9.4	89

#	Article	IF	Citations
19	Stability of Emulsions Containing Both Sodium Caseinate and Tween 20. Journal of Colloid and Interface Science, 1999, 212, 466-473.	9.4	88
20	Ultrasonics in food engineering Part II: Applications. Journal of Food Engineering, 1989, 9, 1-20.	5.2	85
21	Ultrasonic analysis of edible fats and oils. Ultrasonics, 1992, 30, 383-388.	3.9	85
22	Creaming of concentrated oil-in-water emulsions containing xanthan. Food Hydrocolloids, 1994, 8, 481-497.	10.7	81
23	Ultrasonic investigation of the particle size dependence of crystallization in n-hexadecane-in-water emulsions. Journal of Colloid and Interface Science, 1991, 142, 103-110.	9.4	79
24	Ultrasonic study of the gelation of gelatin: Phase diagram, hysteresis and kinetics. Food Hydrocolloids, 2012, 26, 99-107.	10.7	73
25	Neutron diffraction studies of liquid and crystalline trilaurin. JAOCS, Journal of the American Oil Chemists' Society, 1992, 69, 130-136.	1.9	72
26	Amine-responsive bilayer films with improved illumination stability and electrochemical writing property for visual monitoring of meat spoilage. Sensors and Actuators B: Chemical, 2020, 302, 127130.	7.8	68
27	Analysis of the sugar content of fruit juices and drinks using ultrasonic velocity measurements. International Journal of Food Science and Technology, 1992, 27, 515-529.	2.7	67
28	Extruded low density polyethylene-curcumin film: A hydrophobic ammonia sensor for intelligent food packaging. Food Packaging and Shelf Life, 2020, 26, 100595.	7.5	64
29	Development of a simple model device for in vitro gastric digestion investigation. Food and Function, 2011, 2, 174.	4.6	61
30	Ultrasound particle sizing: A review. Particuology, 2013, 11, 135-147.	3.6	59
31	Kinetics of Crystallization in n-Hexadecane and Cocoa Butter Oil-in-Water Emulsions Accounting for Droplet Collision-Mediated Nucleation. Journal of Colloid and Interface Science, 2000, 232, 370-380.	9.4	58
32	Bilayer pH-sensitive colorimetric films with light-blocking ability and electrochemical writing property: Application in monitoring crucian spoilage in smart packaging. Food Chemistry, 2021, 336, 127634.	8.2	58
33	Ultrasonic velocity as a probe of emulsions and suspensions. Advances in Colloid and Interface Science, 1987, 27, 285-316.	14.7	55
34	Ultrasonic characterization of a food emulsion. Ultrasonics, 1990, 28, 266-272.	3.9	55
35	Crystallization in hydrocarbon-in-water emulsions containing a mixture of solid and liquid droplets. Chemical Physics Letters, 1990, 172, 449-452.	2.6	53
36	Agar/TiO2/radish anthocyanin/neem essential oil bionanocomposite bilayer films with improved bioactive capability and electrochemical writing property for banana preservation. Food Hydrocolloids, 2022, 123, 107187.	10.7	50

#	Article	IF	CITATIONS
37	Absorption and velocity dispersion due to crystallization and melting of emulsion droplets. Ultrasonics, 1993, 31, 433-437.	3.9	49
38	The effect of partial glycerides on trilaurin crystallization. JAOCS, Journal of the American Oil Chemists' Society, 1997, 74, 169-171.	1.9	49
39	The molecular basis for sound velocity in n-alkanes, 1-alcohols and dimethylsiloxanes. Physical Chemistry Chemical Physics, 2003, 5, 73-78.	2.8	47
40	A comparative study of ultrasound and laser light diffraction techniques for particle size determination in dairy beverages. Measurement Science and Technology, 2006, 17, 289-297.	2.6	47
41	A visual indicator based on curcumin with high stability for monitoring the freshness of freshwater shrimp, Macrobrachium rosenbergii. Journal of Food Engineering, 2021, 292, 110290.	5.2	47
42	Ultrasonics of food. Contemporary Physics, 1998, 39, 467-478.	1.8	46
43	Crystallization in oil-in-water emulsions containing liquid and solid droplets. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1993, 81, 273-279.	4.7	44
44	The effect of lauric-based molecules on trilaurin crystallization. JAOCS, Journal of the American Oil Chemists' Society, 1994, 71, 1367-1372.	1.9	43
45	Longitudinal acoustic properties of poly(lactic acid) and poly(lactic- <i>co</i> -glycolic acid). Biomedical Materials (Bristol), 2010, 5, 055004.	3.3	43
46	The properties of ZnO nanofluids and the role of H2O2 in the disinfection activity against Escherichia coli. Water Research, 2013, 47, 4013-4021.	11.3	41
47	Ultrasonic investigation of aqueous solutions of a globular protein. Food Hydrocolloids, 1992, 6, 253-262.	10.7	39
48	Faraday communications. Ultrasonic monitoring of crystallization in an oil-in-water emulsion. Journal of the Chemical Society, Faraday Transactions, 1990, 86, 1147.	1.7	37
49	The application of modified forms of the Urick equation to the interpretation of ultrasound velocity in scattering systems. Ultrasonics, 1995, 33, 243-251.	3.9	37
50	Non-invasive sensing for food reassurance. Analyst, The, 2016, 141, 1587-1610.	3.5	37
51	Crystal nucleation in food colloids. Food Hydrocolloids, 2014, 42, 118-129.	10.7	36
52	Ultrasonic velocity measurements in some liquid triglycerides and vegetable oils. JAOCS, Journal of the American Oil Chemists' Society, 1988, 65, 1787-1790.	1.9	34
53	Applications of ultrasonics in food science - novel control of fat crystallization and structuring. Current Opinion in Colloid and Interface Science, 2017, 28, 1-6.	7.4	32
54	Small angle neutron scattering from voids in crystalline trilaurin. JAOCS, Journal of the American Oil Chemists' Society, 1990, 67, 76-78.	1.9	31

#	Article	IF	Citations
55	Modeling of Concentration Profiles and Ultrasound Velocity Profiles in a Creaming Emulsion: Importance of Scattering Effects. Journal of Colloid and Interface Science, 1994, 166, 363-374.	9.4	31
56	Modeling of Combined Creaming and Flocculation in Emulsions. Journal of Colloid and Interface Science, 1997, 186, 80-89.	9.4	30
57	Advances in the ultrasound characterization of dry-cured meat products. Journal of Food Engineering, 2013, 119, 464-470.	5.2	29
58	Application of ultrasonic pulseâ€echo techniques to egg albumen quality testing: A preliminary report. British Poultry Science, 1980, 21, 489-495.	1.7	28
59	Thermal Scattering Must Be Accounted for in the Determination of Adiabatic Compressibility. Journal of Physical Chemistry B, 1997, 101, 1110-1112.	2.6	28
60	An application of the ultrasonic pulse echo technique to the measurement of crispness of biscuits. International Journal of Food Science and Technology, 1981, 16, 167-175.	2.7	28
61	Super-resolution microscopy and empirically validated autocorrelation image analysis discriminates microstructures of dairy derived gels. Food Hydrocolloids, 2019, 90, 62-71.	10.7	27
62	Melting Point Depression of the Surface Layer inn-Alkane Emulsions and Its Implications for Fat Destabilization in Ice Cream. Crystal Growth and Design, 2006, 6, 297-301.	3.0	26
63	Characterizing cocoa butter seed crystals by the oil-in-water emulsion crystallization method. JAOCS, Journal of the American Oil Chemists' Society, 2002, 79, 993-1002.	1.9	25
64	Pulse echo comparison method with FSUPER to measure velocity dispersion in n-tetradecane in water emulsions. Ultrasonics, 2002, 40, 37-41.	3.9	25
65	Investigation of bovine serum albumin denaturation using ultrasonic spectroscopy. Food Hydrocolloids, 2011, 25, 1233-1241.	10.7	23
66	Investigation of phase transitions in glyceride/paraffin oil mixtures using ultrasonic velocity measurements. JAOCS, Journal of the American Oil Chemists' Society, 1988, 65, 1791-1795.	1.9	22
67	Ultrasonic spectroscopy studies of casein in water. International Dairy Journal, 1999, 9, 299-303.	3.0	22
68	Latest advances in imaging techniques for characterizing soft, multiphasic food materials. Advances in Colloid and Interface Science, 2020, 279, 102154.	14.7	22
69	A study of dilatation and acoustic propagation in solidifying fats and oils: II. Experimental. JAOCS, Journal of the American Oil Chemists' Society, 1984, 61, 560-564.	1.9	21
70	CHARACTERIZATION OF RECONSTITUTED MILK POWDER BY ULTRASOUND SPECTROSCOPY. Journal of Food Quality, 2006, 29, 405-418.	2.6	21
71	Shear stiffness and density in potato parenchyma. International Journal of Food Science and Technology, 1998, 33, 461-464.	2.7	20
72	Crystallization kinetics in oil-in-water emulsions containing a mixture of solid and liquid droplets. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 1213.	1.7	18

#	Article	IF	CITATIONS
73	Determination of the adiabatic compressibility of bovine serum albumen in concentrated solution by a new ultrasonic method. Food Hydrocolloids, 2000, 14, 83-91.	10.7	18
74	An ultrasound velocity and attenuation scanner for viewing the temporal evolution of a dispersed phase in fluids. Review of Scientific Instruments, 2001, 72, 4234-4241.	1.3	18
75	Post-processing of polymer foam tissue scaffolds with high power ultrasound: A route to increased pore interconnectivity, pore size and fluid transport. Materials Science and Engineering C, 2013, 33, 4825-4832.	7.3	18
76	Global Small-Angle X-ray Scattering Data Analysis of Triacylglycerols in the Molten State (Part I). Journal of Physical Chemistry B, 2018, 122, 10320-10329.	2.6	18
77	Ultrasonic evaluation of ripening avocado flesh. Postharvest Biology and Technology, 1994, 4, 111-116.	6.0	17
78	Interpretation of ultrasound velocity creaming profiles. Ultrasonics, 1996, 34, 695-698.	3.9	16
79	A simple and rapid method for the determination of particle size in emulsions from ultrasound data. Colloids and Surfaces B: Biointerfaces, 1999, 12, 417-427.	5.0	16
80	A Low Frequency Potential Scattering Description of Acoustic Propagation in Dispersions. SIAM Journal on Applied Mathematics, 2001, 61, 1906-1931.	1.8	16
81	Cross-correlation analysis to quantify relative spatial distributions of fat and protein in super-resolution microscopy images of dairy gels. Food Hydrocolloids, 2019, 97, 105225.	10.7	16
82	A microprocessor control system for thermal sterilisation operations. Journal of Food Engineering, 1986, 5, 31-53.	5.2	15
83	A versatile scanning acoustic platform. Measurement Science and Technology, 2010, 21, 045901.	2.6	15
84	Bacteria counting method based on polyaniline/bacteria thin film. Biosensors and Bioelectronics, 2016, 81, 75-79.	10.1	15
85	Determination of Asphaltene Critical Nanoaggregate Concentration Region Using Ultrasound Velocity Measurements. Scientific Reports, 2017, 7, 16125.	3.3	15
86	Acoustic Methods for Particle Characterisation. KONA Powder and Particle Journal, 2006, 24, 126-133.	1.7	14
87	Quasi-isothermal crystallisation kinetics, non-classical nucleation and surfactant-dependent crystallisation of emulsions. European Journal of Lipid Science and Technology, 2009, 111, 236-242.	1.5	14
88	Acoustic characterisation of pH dependant reversible micellar casein aggregation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 568, 259-265.	4.7	14
89	Ultrasonic temperature measurement and its potential for food processing systems. Food Control, 1990, 1, 54-57.	5 . 5	12
90	Dynamic moisture loss explored through quantitative super-resolution microscopy, spatial micro-viscosity and macroscopic analyses in acid milk gels. Food Hydrocolloids, 2020, 101, 105501.	10.7	12

#	Article	IF	CITATIONS
91	Comparison of effective medium and multipleâ€scattering theories of predicting the ultrasonic properties of dispersions. Journal of the Acoustical Society of America, 1990, 87, 2244-2246.	1.1	11
92	Acoustic Propagation in Dispersions and the Geometric Theory of Diffraction. SIAM Journal on Applied Mathematics, 2003, 63, 834-849.	1.8	10
93	Global Small-Angle X-ray Scattering Data Analysis of Triacylglycerols in the α-Phase (Part II). Journal of Physical Chemistry B, 2018, 122, 10330-10336.	2.6	10
94	Early stages of fat crystallisation evaluated by lowâ€field NMR and smallâ€angle Xâ€ray scattering. Magnetic Resonance in Chemistry, 2019, 57, 686-694.	1.9	10
95	Particulate characterization by ultrasound. Pharmaceutical Science & Technology Today, 2000, 3, 373-380.	0.7	9
96	Acoustic Propagation in Dispersions in the Long Wavelength Limit. SIAM Journal on Applied Mathematics, 2005, 66, 489-509.	1.8	9
97	Identification of important mechanical and acoustic parameters for the sensory quality of cocoa butter alternatives. Food Research International, 2015, 76, 637-644.	6.2	8
98	Fast field cycling NMR relaxometry studies of molten and cooled cocoa butter. Molecular Physics, 2019, 117, 1020-1027.	1.7	8
99	A study of dilatation and acoustic propagation in solidifying fats and oils: I. Theoretical. JAOCS, Journal of the American Oil Chemists' Society, 1984, 61, 558-559.	1.9	7
100	Nucleation in food colloids. Journal of Chemical Physics, 2016, 145, 211906.	3.0	7
101	Monitoring Crystallization in Simple and Mixed Oil-in-Water Emulsions using Ultrasonic Velocity Measurement., 1991,, 171-179.		7
102	Ferromagnetic acoustic resonance in metals. Journal of Physics F: Metal Physics, 1973, 3, L234-L237.	1.6	6
103	A calculation of the pressure dependence of the low-temperature transport properties of dilute KRb alloys. Journal of Physics F: Metal Physics, 1978, 8, 231-238.	1.6	6
104	Electromagnetic generation and attenuation of ultrasound in ferromagnetic metals. I. Journal of Physics F: Metal Physics, 1980, 10, 2041-2053.	1.6	6
105	Ultrasonic absorption in a polystyrene latex. Journal of Colloid and Interface Science, 1983, 93, 565-567.	9.4	6
106	Structure and transformation of low-temperature phases of 1,3-distearoyl-2-oleoyl glycerol. European Journal of Lipid Science and Technology, 2004, 106, 319-324.	1.5	6
107	Acoustic emission monitoring from a lab scale high shear granulator—A novel approach. International Journal of Pharmaceutics, 2014, 465, 262-274.	5.2	6
108	Application of a maximum likelihood algorithm to ultrasound modulated optical tomography. Journal of Biomedical Optics, 2012, 17, 026014.	2.6	5

#	Article	IF	Citations
109	Multiple scattering in dispersions, for long wavelength thermoacoustic solutions. Journal of Physics: Conference Series, 2014, 498, 012005.	0.4	5
110	COMSOL modelling of the acoustoelastic effect. Journal of Physics: Conference Series, 2015, 581, 012008.	0.4	5
111	Acoustic properties of crystallized fat: Relation between polymorphic form, microstructure, fracturing behavior, and sound intensity. European Journal of Lipid Science and Technology, 2016, 118, 1257-1270.	1.5	5
112	ULTRASONIC MONITORING OF MELTING/CRYSTALLIZATION IN EMULSIONS., 1991,, 107-110.		5
113	Acoustic attenuation spectroscopy and helium ion microscopy study of rehydration of dairy powder. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 600, 124795.	4.7	5
114	A perturbation solution for long wavelength thermoacoustic propagation in dispersions. Journal of Computational and Applied Mathematics, 2010, 234, 1996-2002.	2.0	4
115	Ultrasonic and acoustic microscopy: principles and applications to food microstructures. , 2013, , 192-222.		4
116	Estimating the asphaltene critical nanoaggregation concentration region using ultrasonic measurements and Bayesian inference. Scientific Reports, 2021, 11, 6698.	3.3	4
117	Dynamic monitoring of glycine crystallisation with low power ultrasound reflection spectroscopy. Chemical Engineering Research and Design, 2021, 170, 213-223.	5.6	4
118	Chapter 27. Crystallization in Monodisperse Emulsions with Particles in Size Range 20–200 nm. , 0, , 399-412.		4
119	Evidence for the osmotic dehydration theory of freeze damage. Journal of the Science of Food and Agriculture, 1981, 32, 96-98.	3.5	3
120	Reply to Comment on "Distribution of Temperature in Globular Molecules, Cells, or Droplets in Temperature-Jump, Sound Velocity, and Pulsed LASER Experiments― Journal of Physical Chemistry B, 1998, 102, 7510-7510.	2.6	3
121	A perturbation approach to acoustic scattering in dispersions. Journal of the Acoustical Society of America, 2006, 120, 719-732.	1.1	3
122	Acoustic techniques to characterize food microstructure. , 2007, , 311-333.		3
123	Characterization of tissue scaffolds using optics and ultrasound. Proceedings of SPIE, 2011, , .	0.8	3
124	The acoustic spectroscopy of asphaltene aggregation in petroleum. IOP Conference Series: Materials Science and Engineering, 2012, 42, 012022.	0.6	3
125	Electromagnetic generation and attenuation of ultrasound in ferromagnetic metals. II. Journal of Physics F: Metal Physics, 1980, 10, 2555-2572.	1.6	2
126	Estimating organic chain length through sound velocity measurements. Ultrasonics, 2005, 43, 219-226.	3.9	2

#	Article	IF	CITATIONS
127	Enzyme activity determination using ultrasound. Journal of Physics: Conference Series, 2014, 498, 012003.	0.4	2
128	Can airborne ultrasound monitor bubble size in chocolate?. Journal of Physics: Conference Series, 2014, 498, 012001.	0.4	2
129	Application of a maximum likelihood algorithm to ultrasound modulated optical tomography. , 2011, , .		1
130	Development of a discrete element model with moving realistic geometry to simulate particle motion in a Mi-Pro granulator. Computers and Chemical Engineering, 2016, 93, 234-247.	3.8	1
131	Ultrasonic wave propagation in powders. Journal of Physics: Conference Series, 2018, 1017, 012001.	0.4	1
132	Ultrasonic studies of the development of flocculation in mixed sodium caseinate and Tween 20 emulsions., 2001,, 132-135.		1
133	Crystallization in food emulsions. , 0, , 152-162.		1
134	Acoustics and ultrasonics in emulsions and dispersions. Ultrasonics, 1987, 25, 119.	3.9	0
135	Apparatus for determining particle size. Journal of the Acoustical Society of America, 2005, 117, 1689.	1.1	O
136	DEM Simulation of Particle Motion in a MiPro Granulator. , 2009, , .		0
137	Acoustic microscopy in the food industry. IOP Conference Series: Materials Science and Engineering, 2012, 42, 012006.	0.6	0