
stephan Barcikowski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7056074/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Laser Synthesis and Processing of Colloids: Fundamentals and Applications. Chemical Reviews, 2017, 117, 3990-4103.	23.0	965
2	Interaction of colloidal nanoparticles with their local environment: the (ionic) nanoenvironment around nanoparticles is different from bulk and determines the physico-chemical properties of the nanoparticles. Journal of the Royal Society Interface, 2014, 11, 20130931.	1.5	308
3	Advanced nanoparticle generation and excitation by lasers in liquids. Physical Chemistry Chemical Physics, 2013, 15, 3022-3026.	1.3	238
4	Continuous multigram nanoparticle synthesis by high-power, high-repetition-rate ultrafast laser ablation in liquids. Optics Letters, 2016, 41, 1486.	1.7	219
5	Gram Scale Synthesis of Pure Ceramic Nanoparticles by Laser Ablation in Liquid. Journal of Physical Chemistry C, 2010, 114, 2421-2427.	1.5	201
6	Generation of nanoparticle colloids by picosecond and femtosecond laser ablations in liquid flow. Applied Physics Letters, 2007, 91, .	1.5	189
7	Properties of nanoparticles generated during femtosecond laser machining in air and water. Applied Physics A: Materials Science and Processing, 2007, 87, 47-55.	1.1	189
8	Roomâ€Temperature Laser Synthesis in Liquid of Oxide, Metalâ€Oxide Coreâ€Shells, and Doped Oxide Nanoparticles. Chemistry - A European Journal, 2020, 26, 9206-9242.	1.7	189
9	Dynamics of silver nanoparticle formation and agglomeration inside the cavitation bubble after pulsed laser ablation in liquid. Physical Chemistry Chemical Physics, 2013, 15, 3068-3074.	1.3	174
10	Two mechanisms of nanoparticle generation in picosecond laser ablation in liquids: the origin of the bimodal size distribution. Nanoscale, 2018, 10, 6900-6910.	2.8	173
11	Nanoparticle formation in a cavitation bubble after pulsed laser ablation in liquid studied with high time resolution small angle x-ray scattering. Applied Physics Letters, 2012, 101, 103104.	1.5	168
12	Size control of laser-fabricated surfactant-free gold nanoparticles with highly diluted electrolytes and their subsequent bioconjugation. Physical Chemistry Chemical Physics, 2013, 15, 3057-3067.	1.3	156
13	Cavitation dynamics of laser ablation of bulk and wire-shaped metals in water during nanoparticles production. Physical Chemistry Chemical Physics, 2013, 15, 3083-3092.	1.3	155
14	Reprotoxicity of gold, silver, and gold–silver alloy nanoparticles on mammalian gametes. Analyst, The, 2014, 139, 931-942.	1.7	149
15	In Situ Bioconjugation: Single Step Approach to Tailored Nanoparticleâ€Bioconjugates by Ultrashort Pulsed Laser Ablation. Advanced Functional Materials, 2009, 19, 1167-1172.	7.8	145
16	Kinetically-controlled laser-synthesis of colloidal high-entropy alloy nanoparticles. RSC Advances, 2019, 9, 18547-18558.	1.7	142
17	<i>In Situ</i> Non-DLVO Stabilization of Surfactant-Free, Plasmonic Gold Nanoparticles: Effect of Hofmeister's Anions. Langmuir, 2014, 30, 4213-4222.	1.6	135
18	A hierarchical view on material formation during pulsed-laser synthesis of nanoparticles in liquid. Scientific Reports, 2015, 5, 16313.	1.6	132

#	Article	IF	CITATIONS
19	Current state of laser synthesis of metal and alloy nanoparticles as ligand-free reference materials for nano-toxicological assays. Beilstein Journal of Nanotechnology, 2014, 5, 1523-1541.	1.5	130
20	Review on experimental and theoretical investigations of the early stage, femtoseconds to microseconds processes during laser ablation in liquid-phase for the synthesis of colloidal nanoparticles. Plasma Sources Science and Technology, 2019, 28, 103001.	1.3	128
21	Pulsed Laser Ablation of Zinc in Tetrahydrofuran: Bypassing the Cavitation Bubble. Journal of Physical Chemistry C, 2010, 114, 7618-7625.	1.5	115
22	Solvent-surface interactions control the phase structure in laser-generated iron-gold core-shell nanoparticles. Scientific Reports, 2016, 6, 23352.	1.6	113
23	How Citrate Ligands Affect Nanoparticle Adsorption to Microparticle Supports. Langmuir, 2012, 28, 6132-6140.	1.6	112
24	Perspective of Surfactantâ€Free Colloidal Nanoparticles in Heterogeneous Catalysis. ChemCatChem, 2019, 11, 4489-4518.	1.8	112
25	Cytotoxicity and ion release of alloy nanoparticles. Journal of Nanoparticle Research, 2012, 14, 1-10.	0.8	105
26	Impact and structure of literature on nanoparticle generation by laser ablation in liquids. Journal of Nanoparticle Research, 2009, 11, 1883-1893.	0.8	104
27	Monophasic ligand-free alloy nanoparticle synthesis determinants during pulsed laser ablation of bulk alloy and consolidated microparticles in water. Physical Chemistry Chemical Physics, 2014, 16, 23671-23678.	1.3	102
28	Pure colloidal metal and ceramic nanoparticles from high-power picosecond laser ablation in water and acetone. Nanotechnology, 2009, 20, 445603.	1.3	101
29	Pulsed Nd:YAG laser cutting of NiTi shape memory alloys—Influence of process parameters. Journal of Materials Processing Technology, 2010, 210, 1918-1925.	3.1	92
30	Conjugation Efficiency of Laser-Based Bioconjugation of Gold Nanoparticles with Nucleic Acids. Journal of Physical Chemistry C, 2009, 113, 19830-19835.	1.5	90
31	How persistent microbubbles shield nanoparticle productivity in laser synthesis of colloids – quantification of their volume, dwell dynamics, and gas composition. Physical Chemistry Chemical Physics, 2017, 19, 7112-7123.	1.3	85
32	How Size Determines the Value of Gold: Economic Aspects of Wet Chemical and Laserâ€Based Metal Colloid Synthesis. ChemPhysChem, 2017, 18, 1012-1019.	1.0	84
33	Pulsed laser ablation in liquids: Impact of the bubble dynamics on particle formation. Journal of Colloid and Interface Science, 2017, 489, 106-113.	5.0	84
34	Oxide dispersion-strengthened alloys generated by laser metal deposition of laser-generated nanoparticle-metal powder composites. Materials and Design, 2018, 154, 360-369.	3.3	82
35	Laser ablation-based one-step generation and bio-functionalization of gold nanoparticles conjugated with aptamers. Journal of Nanobiotechnology, 2010, 8, 21.	4.2	81
36	Adsorption of Colloidal Platinum Nanoparticles to Supports: Charge Transfer and Effects of Electrostatic and Steric Interactions. Langmuir, 2014, 30, 11928-11936.	1.6	81

#	Article	IF	CITATIONS
37	Size control and supporting of palladium nanoparticles made by laser ablation in saline solution as a facile route to heterogeneous catalysts. Applied Surface Science, 2015, 348, 75-84.	3.1	81
38	Bioconjugated silicon quantum dots from one-step green synthesis. Nanoscale, 2012, 4, 1271.	2.8	79
39	Polymer-stable magnesium nanocomposites prepared byÂlaser ablation for efficient hydrogen storage. International Journal of Hydrogen Energy, 2013, 38, 11530-11535.	3.8	79
40	Size Quenching during Laser Synthesis of Colloids Happens Already in the Vapor Phase of the Cavitation Bubble. Journal of Physical Chemistry C, 2017, 121, 5356-5365.	1.5	79
41	Transfer-Matrix Method for Efficient Ablation by Pulsed Laser Ablation and Nanoparticle Generation in Liquids. Journal of Physical Chemistry C, 2011, 115, 5108-5114.	1.5	77
42	Laser Fragmentation of Colloidal Gold Nanoparticles with High-Intensity Nanosecond Pulses is Driven by a Single-Step Fragmentation Mechanism with a Defined Educt Particle-Size Threshold. Journal of Physical Chemistry C, 2018, 122, 22125-22136.	1.5	77
43	Influences on Nanoparticle Production during Pulsed Laser Ablation. Journal of Laser Micro Nanoengineering, 2008, 3, 73-77.	0.4	76
44	Quantitative visualization of colloidal and intracellular gold nanoparticles by confocal microscopy. Journal of Biomedical Optics, 2010, 15, 036015.	1.4	75
45	Ligand-free Gold Nanoparticles as a Reference Material for Kinetic Modelling of Catalytic Reduction of 4-Nitrophenol. Catalysis Letters, 2015, 145, 1105-1112.	1.4	75
46	Tailored protein encapsulation into a DNA host using geometrically organized supramolecular interactions. Nature Communications, 2017, 8, 14472.	5.8	73
47	Magnetic Alloy Nanoparticles from Laser Ablation in Cyclopentanone and Their Embedding into a Photoresist. Langmuir, 2010, 26, 6892-6897.	1.6	72
48	Chemical and physical side effects at application of ultrashort laser pulses for intrastromal refractive surgery. Journal of Optics, 2000, 2, 59-64.	1.5	71
49	Stoichiometry of alloy nanoparticles from laser ablation of PtIr in acetone and their electrophoretic deposition on PtIr electrodes. Nanotechnology, 2011, 22, 145601.	1.3	69
50	Debris-free rear-side picosecond laser ablation of thin germanium wafers in water with ethanol. Applied Surface Science, 2016, 367, 222-230.	3.1	69
51	Influence of processing time on nanoparticle generation during picosecond-pulsed fundamental and second harmonic laser ablation of metals in tetrahydrofuran. Applied Physics A: Materials Science and Processing, 2011, 104, 77-82.	1.1	67
52	Influence of gold, silver and gold–silver alloy nanoparticles on germ cell function and embryo development. Beilstein Journal of Nanotechnology, 2015, 6, 651-664.	1.5	67
53	Microstructure formation and mechanical properties of ODS steels built by laser additive manufacturing of nanoparticle coated iron-chromium powders. Acta Materialia, 2021, 206, 116566.	3.8	67
54	Role of Dissolved and Molecular Oxygen on Cu and PtCu Alloy Particle Structure during Laser Ablation Synthesis in Liquids. ChemPhysChem, 2017, 18, 1175-1184.	1.0	66

#	Article	IF	CITATIONS
55	Metal ion release kinetics from nanoparticle silicone composites. Journal of Controlled Release, 2011, 154, 164-170.	4.8	65
56	Quantification of mass-specific laser energy input converted into particle properties during picosecond pulsed laser fragmentation of zinc oxide and boron carbide in liquids. Applied Surface Science, 2015, 348, 22-29.	3.1	65
57	Effects of Silver Nitrate and Silver Nanoparticles on a Planktonic Community: General Trends after Short-Term Exposure. PLoS ONE, 2014, 9, e95340.	1.1	65
58	Pulsed laser ablation of a continuously-fed wire in liquid flow for high-yield production of silver nanoparticles. Physical Chemistry Chemical Physics, 2013, 15, 3093-3098.	1.3	64
59	Tissue Concentrations of Zinc, Iron, Copper, and Magnesium During the Phases of Full Thickness Wound Healing in a Rodent Model. Biological Trace Element Research, 2019, 191, 167-176.	1.9	64
60	Alloying colloidal silver nanoparticles with gold disproportionally controls antibacterial and toxic effects. Gold Bulletin, 2014, 47, 83-93.	1.1	62
61	One-step synthesis of Fe–Au core–shell magnetic-plasmonic nanoparticles driven by interface energy minimization. Nanoscale Horizons, 2019, 4, 1326-1332.	4.1	62
62	Influence of Water Temperature on the Hydrodynamic Diameter of Gold Nanoparticles from Laser Ablation. Journal of Physical Chemistry C, 2010, 114, 2499-2504.	1.5	61
63	Status and demand of research to bring laser generation of nanoparticles in liquids to maturity. Applied Surface Science, 2019, 488, 445-454.	3.1	61
64	Materials synthesis in a bubble. MRS Bulletin, 2019, 44, 382-391.	1.7	60
65	Impact of Ligands on Structural and Optical Properties of Ag ₂₉ Nanoclusters. Journal of the American Chemical Society, 2021, 143, 9405-9414.	6.6	60
66	Nonendosomal cellular uptake of ligandâ€free, positively charged gold nanoparticles. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2010, 77A, 439-446.	1.1	58
67	Sex selection of sperm in farm animals: status report and developmental prospects. Reproduction, 2013, 145, R15-R30.	1.1	58
68	Gold nanoparticles interfere with sperm functionality by membrane adsorption without penetration. Nanotoxicology, 2014, 8, 118-127.	1.6	56
69	The effect of the Au loading on the liquid-phase aerobic oxidation of ethanol over Au/TiO2 catalysts prepared by pulsed laser ablation. Journal of Catalysis, 2015, 330, 497-506.	3.1	56
70	Laser Fragmentationâ€Induced Defectâ€Rich Cobalt Oxide Nanoparticles for Electrochemical Oxygen Evolution Reaction. ChemSusChem, 2020, 13, 520-528.	3.6	55
71	Toxicity of Gold Nanoparticles on Somatic and Reproductive Cells. Advances in Experimental Medicine and Biology, 2012, 733, 125-133.	0.8	54
72	Adjusting the catalytic properties of cobalt ferrite nanoparticles by pulsed laser fragmentation in water with defined energy dose. Scientific Reports, 2017, 7, 13161.	1.6	54

#	Article	IF	CITATIONS
73	Penetratin-Conjugated Gold Nanoparticles â~' Design of Cell-Penetrating Nanomarkers by Femtosecond Laser Ablation. Journal of Physical Chemistry C, 2011, 115, 5152-5159.	1.5	53
74	Plasmon assisted 3D microstructuring of gold nanoparticle-doped polymers. Nanotechnology, 2016, 27, 154001.	1.3	52
75	Barrierless growth of precursor-free, ultrafast laser-fragmented noble metal nanoparticles by colloidal atom clusters – A kinetic in situ study. Journal of Colloid and Interface Science, 2016, 463, 299-307.	5.0	52
76	Design and perspective of amorphous metal nanoparticles from laser synthesis and processing. Physical Chemistry Chemical Physics, 2021, 23, 11121-11154.	1.3	52
77	Trends and Current Topics in the Field of Laser Ablation and Nanoparticle Generation in Liquids. Journal of Physical Chemistry C, 2011, 115, 4985-4985.	1.5	51
78	Laser synthesis, structure and chemical properties of colloidal nickel-molybdenum nanoparticles for the substitution of noble metals in heterogeneous catalysis. Journal of Colloid and Interface Science, 2017, 489, 57-67.	5.0	51
79	Cardiorespiratory function before and after operation for pectus excavatum Medium-term results. European Journal of Cardio-thoracic Surgery, 1998, 13, 275-279.	0.6	50
80	Depositing laser-generated nanoparticles on powders for additive manufacturing of oxide dispersed strengthened alloy parts via laser metal deposition. Japanese Journal of Applied Physics, 2018, 57, 040310.	0.8	50
81	Right ventricular morphology and function after pulmonary resection. European Journal of Cardio-thoracic Surgery, 1999, 15, 444-448.	0.6	49
82	Compatibilization of laser generated antibacterial Ag- and Cu-nanoparticles for perfluorinated implant materials. European Polymer Journal, 2011, 47, 662-667.	2.6	48
83	High productive and continuous nanoparticle fabrication by laser ablation of a wire-target in a liquid jet. Applied Surface Science, 2017, 403, 487-499.	3.1	48
84	Impact of Preparation Method and Hydrothermal Aging on Particle Size Distribution of Pt/l³-Al ₂ O ₃ and Its Performance in CO and NO Oxidation. Journal of Physical Chemistry C, 2019, 123, 5433-5446.	1.5	48
85	Impact of in situ polymer coating on particle dispersion into solid laser-generated nanocomposites. Physical Chemistry Chemical Physics, 2011, 13, 5120.	1.3	47
86	Serum albumin reduces the antibacterial and cytotoxic effects of hydrogel-embedded colloidal silver nanoparticles. RSC Advances, 2012, 2, 7190.	1.7	47
87	Characterizing the Effect of Multivalent Conjugates Composed of AÎ ² -Specific Ligands and Metal Nanoparticles on Neurotoxic Fibrillar Aggregation. ACS Nano, 2016, 10, 7582-7597.	7.3	46
88	How the crystal structure and phase segregation of Au–Fe alloy nanoparticles are ruled by the molar fraction and size. Nanoscale, 2018, 10, 16434-16437.	2.8	46
89	Early appearance of crystalline nanoparticles in pulsed laser ablation in liquids dynamics. Nanoscale, 2019, 11, 6962-6969.	2.8	46
90	Laser fragmentation of organic microparticles into colloidal nanoparticles in a free liquid jet. Applied Physics A: Materials Science and Processing, 2010, 101, 435-439.	1.1	45

#	Article	IF	CITATIONS
91	Photoluminescent zinc oxide polymer nanocomposites fabricated using picosecond laser ablation in an organic solvent. Applied Surface Science, 2011, 257, 7231-7237.	3.1	45
92	Influence of ligands in metal nanoparticle electrophoresis for the fabrication of biofunctional coatings. Applied Surface Science, 2015, 348, 92-99.	3.1	45
93	Characterisation and modification of the heat affected zone during laser material processing of wood and wood composites. European Journal of Wood and Wood Products, 2006, 64, 94-103.	1.3	44
94	Solid solution magnetic FeNi nanostrand–polymer composites by connecting-coarsening assembly. Journal of Materials Chemistry C, 2015, 3, 10699-10704.	2.7	44
95	Time and Mechanism of Nanoparticle Functionalization by Macromolecular Ligands during Pulsed Laser Ablation in Liquids. Langmuir, 2019, 35, 3038-3047.	1.6	44
96	Hydrodynamic size distribution of gold nanoparticles controlled by repetition rate during pulsed laser ablation in water. Applied Surface Science, 2011, 257, 4285-4290.	3.1	42
97	In situ bioconjugation—Novel laser based approach to pure nanoparticle-conjugates. Applied Surface Science, 2009, 255, 5435-5438.	3.1	41
98	Layered Seed-Growth of AgGe Football-like Microspheres via Precursor-Free Picosecond Laser Synthesis in Water. Scientific Reports, 2015, 5, 13661.	1.6	41
99	Fluence Threshold Behaviour on Ablation and Bubble Formation in Pulsed Laser Ablation in Liquids. ChemPhysChem, 2017, 18, 1084-1090.	1.0	41
100	Determining the role of redox-active materials during laser-induced water decomposition. Physical Chemistry Chemical Physics, 2019, 21, 18636-18651.	1.3	41
101	Ligand-free gold atom clusters adsorbed on graphene nano sheets generated by oxidative laser fragmentation in water. Chemical Physics Letters, 2014, 610-611, 256-260.	1.2	40
102	Target geometry and rigidity determines laser-induced cavitation bubble transport and nanoparticle productivity – a high-speed videography study. Physical Chemistry Chemical Physics, 2016, 18, 16585-16593.	1.3	40
103	Size-Selective Optical Printing of Silicon Nanoparticles through Their Dipolar Magnetic Resonance. ACS Photonics, 2019, 6, 815-822.	3.2	40
104	Rational design of gold nanoparticle toxicology assays: a question of exposure scenario, dose and experimental setup. Nanomedicine, 2014, 9, 1971-1989.	1.7	39
105	Germanium Sub-Microspheres Synthesized by Picosecond Pulsed Laser Melting in Liquids: Educt Size Effects. Scientific Reports, 2017, 7, 40355.	1.6	39
106	Comparing the Activity of Complex Solid Solution Electrocatalysts Using Inflection Points of Voltammetric Activity Curves as Activity Descriptors. ACS Catalysis, 2021, 11, 1014-1023.	5.5	39
107	Ligand-free gold–silver nanoparticle alloy polymer composites generated by picosecond laser ablation in liquid monomer. Applied Physics A: Materials Science and Processing, 2013, 110, 343-350.	1.1	38
108	Nano-energy research trends: bibliometrical analysis of nanotechnology research in the energy sector. Journal of Nanoparticle Research, 2011, 13, 3911-3922.	0.8	37

#	Article	IF	CITATIONS
109	Charge Balancing of Model Gold-Nanoparticle-Peptide Conjugates Controlled by the Peptide's Net Charge and the Ligand to Nanoparticle Ratio. Journal of Physical Chemistry C, 2014, 118, 10302-10313.	1.5	37
110	Laser-based in situ embedding of metal nanoparticles into bioextruded alginate hydrogel tubes enhances human endothelial cell adhesion. Nano Research, 2016, 9, 3407-3427.	5.8	37
111	Crystallographic characterization of laser-generated, polymer-stabilized 4â€ ⁻ nm silver-gold alloyed nanoparticles. Materials Chemistry and Physics, 2018, 207, 442-450.	2.0	37
112	Plasma and nanoparticle shielding during pulsed laser ablation in liquids cause ablation efficiency decrease. Opto-Electronic Advances, 2021, 4, 200072-200072.	6.4	37
113	Delay Time and Concentration Effects During Bioconjugation of Nanosecond Laser-Generated Nanoparticles in a Liquid Flow. Journal of Physical Chemistry C, 2011, 115, 5094-5101.	1.5	36
114	Ripening kinetics of laser-generated plasmonic nanoparticles in different solvents. Chemical Physics Letters, 2015, 626, 96-101.	1.2	36
115	Comparison of the productivity and ablation efficiency of different laser classes for laser ablation of gold in water and air. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	36
116	Laser-generated high entropy metallic glass nanoparticles as bifunctional electrocatalysts. Nano Research, 2022, 15, 4807-4819.	5.8	36
117	Inclusion of supported gold nanoparticles into their semiconductor support. Physical Chemistry Chemical Physics, 2015, 17, 29311-29318.	1.3	35
118	Primary particle diameter differentiation and bimodality identification by five analytical methods using gold nanoparticle size distributions synthesized by pulsed laser ablation in liquids. Applied Surface Science, 2018, 435, 743-751.	3.1	35
119	Electrophoretic deposition of ligand-free platinum nanoparticles on neural electrodes affects their impedance in vitro and in vivo with no negative effect on reactive gliosis. Journal of Nanobiotechnology, 2016, 14, 3.	4.2	34
120	Femtosecond laser microstructuring of hot-isostatically pressed zirconia ceramic. Journal of Laser Applications, 2007, 19, 107-115.	0.8	33
121	Electrochemistry-controlled metal ion release from silicone elastomer nanocomposites through combination of different metal nanoparticles. Journal of Materials Chemistry, 2011, 21, 10287.	6.7	33
122	Development of a specially tailored local drug delivery system for the prevention of fibrosis after insertion of cochlear implants into the inner ear. Journal of Materials Science: Materials in Medicine, 2012, 23, 2151-2162.	1.7	33
123	Laser additive manufacturing of oxide dispersion strengthened steels using laser-generated nanoparticle-metal composite powders. Procedia CIRP, 2018, 74, 196-200.	1.0	33
124	Doseâ€dependent surface endothelialization and biocompatibility of polyurethane noble metal nanocomposites. Journal of Biomedical Materials Research - Part A, 2014, 102, 1909-1920.	2.1	32
125	In Situ Investigations of Laser-Generated Ligand-Free Platinum Nanoparticles by X-ray Absorption Spectroscopy: How Does the Immediate Environment Influence the Particle Surface?. Langmuir, 2016, 32, 8793-8802.	1.6	32
126	Opportunities and Challenges for Laser Synthesis of Colloids. ChemPhysChem, 2017, 18, 983-985.	1.0	32

#	Article	IF	CITATIONS
127	How the re-irradiation of a single ablation spot affects cavitation bubble dynamics and nanoparticles properties in laser ablation in liquids. Applied Surface Science, 2019, 473, 828-837.	3.1	32
128	First on-line analysis of petroleum from single inclusion using ultrafast laser ablation. Organic Geochemistry, 2010, 41, 74-77.	0.9	31
129	Golden Perspective: Application of Laserâ€Generated Gold Nanoparticle Conjugates in Reproductive Biology. Reproduction in Domestic Animals, 2011, 46, 42-52.	0.6	31
130	Bioconjugated Gold Nanoparticles Penetrate Into Spermatozoa Depending on Plasma Membrane Status. Journal of Biomedical Nanotechnology, 2015, 11, 1597-1607.	0.5	31
131	A new approach to coat PA12 powders with laser-generated nanoparticles for selective laser sintering. Procedia CIRP, 2018, 74, 244-248.	1.0	31
132	Design and application of a weed damage model for laser-based weed control. Biosystems Engineering, 2012, 113, 148-157.	1.9	30
133	Efficient nucleic acid delivery to murine regulatory T cells by gold nanoparticle conjugates. Scientific Reports, 2016, 6, 28709.	1.6	30
134	Discrimination of effects leading to gas formation during pulsed laser ablation in liquids. Applied Surface Science, 2019, 465, 1096-1102.	3.1	30
135	Dynamics of laser-induced cavitation bubbles at a solid–liquid interface in high viscosity and high capillary number regimes. Journal of Applied Physics, 2020, 127, .	1.1	30
136	Impact of Metal Nanoparticles on Germ Cell Viability and Functionality. Reproduction in Domestic Animals, 2012, 47, 359-368.	0.6	29
137	First PEM fuel cell based on ligand-free, laser-generated platinum nanoparticles. Applied Surface Science, 2019, 467-468, 486-492.	3.1	29
138	Durability study of platinum nanoparticles supported on gas-phase synthesized graphene in oxygen reduction reaction conditions. Applied Surface Science, 2019, 467-468, 1181-1186.	3.1	29
139	Research trends in laser powder bed fusion of Al alloys within the last decade. Additive Manufacturing, 2020, 36, 101489.	1.7	29
140	Synthesis of gold, platinum, and gold-platinum alloy nanoparticle colloids with high-power megahertz-repetition-rate lasers: the importance of the beam guidance method. Applied Nanoscience (Switzerland), 2021, 11, 1303-1312.	1.6	29
141	Laser Powder Bed Fusion of Polymers: Quantitative Research Direction Indices. Materials, 2021, 14, 1169.	1.3	29
142	Spontaneous Shape Alteration and Size Separation of Surfactant-Free Silver Particles Synthesized by Laser Ablation in Acetone during Long-Period Storage. Nanomaterials, 2018, 8, 529.	1.9	28
143	Plasmonic Seasoning: Giving Color to Desktop Laser 3D Printed Polymers by Highly Dispersed Nanoparticles. Advanced Optical Materials, 2020, 8, 2000473.	3.6	28
144	Comparison of ultrashort pulse ablation of gold in air and water by time-resolved experiments. Light: Science and Applications, 2022, 11, 68.	7.7	28

#	Article	IF	CITATIONS
145	Laser induced modification of surface structures. Applied Surface Science, 2007, 253, 4295-4299.	3.1	27
146	Effective size separation of laser-generated, surfactant-free nanoparticles by continuous centrifugation. Nanotechnology, 2020, 31, 095603.	1.3	27
147	Selective Aerobic Oxidation of 5â€(Hydroxymethyl)furfural over Heterogeneous Silverâ€Gold Nanoparticle Catalysts. Advanced Synthesis and Catalysis, 2020, 362, 5681-5696.	2.1	27
148	3D printing of magnetic parts by laser powder bed fusion of iron oxide nanoparticle functionalized polyamide powders. Journal of Materials Chemistry C, 2020, 8, 12204-12217.	2.7	27
149	Nanocomposite manufacturing using ultrashort-pulsed laser ablation in solvents and monomers. Polimery, 2008, 53, 657-662.	0.4	27
150	Ablation efficiency of α-Al2O3 in liquid phase and ambient air byÂnanosecond laser irradiation. Applied Physics A: Materials Science and Processing, 2010, 100, 203-206.	1.1	26
151	Biocompatibility of nanoactuators: stem cell growth on laser-generated nickel–titanium shape memory alloy nanoparticles. Journal of Nanoparticle Research, 2010, 12, 1733-1742.	0.8	26
152	Temperature-Dependent Ultrastructure Transformation of Au–Fe Nanoparticles Investigated by <i>in Situ</i> Scanning Transmission Electron Microscopy. Crystal Growth and Design, 2018, 18, 5434-5440.	1.4	26
153	Ultrafiltration membrane-based purification of bioconjugated gold nanoparticle dispersions. Separation and Purification Technology, 2016, 157, 120-130.	3.9	25
154	Formation of Co–Au Core–Shell Nanoparticles with Thin Gold Shells and Soft Magnetic ε-Cobalt Cores Ruled by Thermodynamics and Kinetics. Journal of Physical Chemistry C, 2021, 125, 9534-9549.	1.5	25
155	Impact of Spacer and Strand Length on Oligonucleotide Conjugation to the Surface of Ligand-Free Laser-Generated Gold Nanoparticles. Bioconjugate Chemistry, 2012, 23, 908-915.	1.8	24
156	Therapeutic Window of Ligandâ€Free Silver Nanoparticles in Agarâ€Embedded and Colloidal State: In Vitro Bactericidal Effects and Cytotoxicity. Advanced Engineering Materials, 2012, 14, B231.	1.6	24
157	Injection of ligand-free gold and silver nanoparticles into murine embryos does not impact pre-implantation development. Beilstein Journal of Nanotechnology, 2014, 5, 677-688.	1.5	24
158	Biocompatible microgel-modified electrospun fibers for zinc ion release. Polymer, 2015, 61, 163-173.	1.8	24
159	Strategies to harvest the unique properties of laser-generated nanomaterials in biomedical and energy applications. Applied Surface Science, 2015, 348, 1-3.	3.1	24
160	Synthesis of Fluorescent Silver Nanoclusters: Introducing Bottom-Up and Top-Down Approaches to Nanochemistry in a Single Laboratory Class. Journal of Chemical Education, 2020, 97, 239-243.	1.1	24
161	Limited Elemental Mixing in Nanoparticles Generated by Ultrashort Pulse Laser Ablation of AgCu Bilayer Thin Films in a Liquid Environment: Atomistic Modeling and Experiments. Journal of Physical Chemistry C, 2021, 125, 2132-2155.	1.5	24
162	A laser-based synthesis route for magnetic metallic glass nanoparticles. Scripta Materialia, 2021, 203, 114094.	2.6	24

#	Article	IF	CITATIONS
163	In-situ bioconjugation in stationary media and in liquid flow byÂfemtosecond laser ablation. Applied Physics A: Materials Science and Processing, 2010, 101, 259-264.	1.1	23
164	Influence of beam intensity profile on the aerodynamic particle size distributions generated by femtosecond laser ablation. Laser and Particle Beams, 2010, 28, 45-52.	0.4	23
165	Antimicrobial efficacy, cytotoxicity, and ion release of mixed metal (Ag, Cu, Zn, Mg) nanoparticle polymer composite implant material. BioNanoMaterials, 2013, 14, .	1.4	23
166	Synergism between Specific Halide Anions and pH Effects during Nanosecond Laser Fragmentation of Ligand-Free Gold Nanoparticles. Langmuir, 2019, 35, 6630-6639.	1.6	23
167	Zinc sulfide for photocatalysis: White angel or black sheep?. Progress in Materials Science, 2022, 124, 100865.	16.0	23
168	Induction of Osteogenic Differentiation of Adipose Derived Stem Cells by Microstructured Nitinol Actuator-Mediated Mechanical Stress. PLoS ONE, 2012, 7, e51264.	1.1	23
169	Physical fabrication of colloidal ZnO nanoparticles combining wet-grinding and laser fragmentation. Applied Physics A: Materials Science and Processing, 2012, 108, 793-799.	1.1	22
170	Near-field-enhanced, off-resonant laser sintering of semiconductor particles for additive manufacturing of dispersed Au–ZnO-micro/nano hybrid structures. Applied Physics A: Materials Science and Processing, 2014, 114, 1023-1030.	1.1	22
171	Peptide Cross-linkers: Immobilization of Platinum Nanoparticles Highly Dispersed on Graphene Oxide Nanosheets with Enhanced Photocatalytic Activities. ACS Applied Materials & Interfaces, 2017, 9, 9996-10002.	4.0	22
172	Process Chain for the Fabrication of Nanoparticle Polymer Composites by Laser Ablation Synthesis. Chemical Engineering and Technology, 2017, 40, 1535-1543.	0.9	22
173	Pulsed laser ablation of wire-shaped target in a thin water jet: effects of plasma features and bubble dynamics on the PLAL process. Journal Physics D: Applied Physics, 2017, 50, 185204.	1.3	22
174	Increasing the Size-Selectivity in Laser-Based g/h Liquid Flow Synthesis of Pt and PtPd Nanoparticles for CO and NO Oxidation in Industrial Automotive Exhaust Gas Treatment Benchmarking. Nanomaterials, 2020, 10, 1582.	1.9	22
175	Adhesion, Vitality and Osteogenic Differentiation Capacity of Adipose Derived Stem Cells Seeded on Nitinol Nanoparticle Coatings. PLoS ONE, 2013, 8, e53309.	1.1	22
176	Effect of pH on the spontaneous synthesis of palladium nanoparticles on reduced graphene oxide. Applied Surface Science, 2016, 389, 911-915.	3.1	21
177	Single-Particle Hyperspectral Imaging Reveals Kinetics of Silver Ion Leaching from Alloy Nanoparticles. ACS Nano, 2021, 15, 8363-8375.	7.3	21
178	Photoluminescence of Fully Inorganic Colloidal Gold Nanocluster and Their Manipulation Using Surface Charge Effects. Advanced Materials, 2021, 33, e2101549.	11.1	21
179	Therapeutic Window for Bioactive Nanocomposites Fabricated by Laser Ablation in Polymerâ€Doped Organic Liquids. Advanced Engineering Materials, 2010, 12, B156.	1.6	20
180	Impact of Single-Pulse, Low-Intensity Laser Post-Processing on Structure and Activity of Mesostructured Cobalt Oxide for the Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2021, 13, 51962-51973.	4.0	20

#	Article	IF	CITATIONS
181	Synthesis of hybrid microgels by coupling of laser ablation and polymerization in aqueous medium. Journal of Laser Applications, 2012, 24, 042012.	0.8	19
182	Optical and electron microscopy study of laser-based intracellular molecule delivery using peptide-conjugated photodispersible gold nanoparticle agglomerates. Journal of Nanobiotechnology, 2016, 14, 2.	4.2	19
183	X-ray spectroscopic and stroboscopic analysis of pulsed-laser ablation of Zn and its oxidation. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	1.1	19
184	Platinum nanoparticles supported on reduced graphene oxide prepared in situ by a continuous one-step laser process. Applied Surface Science, 2019, 469, 811-820.	3.1	19
185	In situ speciation and spatial mapping of Zn products during pulsed laser ablation in liquids (PLAL) by combined synchrotron methods. Nanoscale, 2020, 12, 14011-14020.	2.8	19
186	Comparison of nanoparticle-mediated transfection methods for DNA expression plasmids: efficiency and cytotoxicity. Journal of Nanobiotechnology, 2011, 9, 47.	4.2	18
187	Continuous Electrophoretic Deposition and Electrophoretic Mobility of Ligand-Free, Metal Nanoparticles in Liquid Flow. Journal of the Electrochemical Society, 2015, 162, D174-D179.	1.3	18
188	Secondary Hazards: Particle and X-Ray Emission. Topics in Applied Physics, 2004, , 309-321.	0.4	17
189	Femtosecond Laser Cleaning of Metallic Cultural Heritage and Antique Artworks. Springer Proceedings in Physics, 2005, , 61-69.	0.1	17
190	Functionality of laser-sintered shape memory micro-actuators. Physics Procedia, 2010, 5, 607-615.	1.2	17
191	Direct Integration of Laser-Generated Nanoparticles into Transparent Nail Polish: The Plasmonic "Goldfinger― Industrial & Engineering Chemistry Research, 2017, 56, 3291-3296.	1.8	17
192	Colloidal Stability of Metal Nanoparticles in Engine Oil under Thermal and Mechanical Load. Chemical Engineering and Technology, 2017, 40, 1569-1576.	0.9	17
193	Incubation Effect of Preâ€Irradiation on Bubble Formation and Ablation in Laser Ablation in Liquids. ChemPhysChem, 2019, 20, 1036-1043.	1.0	17
194	Analysis of the Nanoparticle Dispersion and Its Effect on the Crystalline Microstructure in Carbon-Additivated PA12 Feedstock Material for Laser Powder Bed Fusion. Materials, 2020, 13, 3312.	1.3	17
195	Picosecond and Femtosecond Laser Machining May Cause Health Risks Related to Nanoparticle Emission. Journal of Laser Micro Nanoengineering, 2009, 4, 159-164.	0.4	17
196	Electrochemical Reduction of CO ₂ on Au Electrocatalysts in a Zeroâ€Gap, Halfâ€Cell Gas Diffusion Electrode Setup: a Systematic Performance Evaluation and Comparison to an Hâ€cell Setup**. ChemElectroChem, 2022, 9, .	1.7	17
197	Interface of Nanoparticle-Coated Electropolished Stents. Langmuir, 2012, 28, 12060-12066.	1.6	16
198	Integration of Gold Nanoparticles into NIRâ€Radiation Curable Powder Resin. ChemistrySelect, 2016, 1, 5574-5578.	0.7	16

#	Article	IF	CITATIONS
199	Ablation target cooling by maximizing the nanoparticle productivity in laser synthesis of colloids. Applied Surface Science, 2019, 466, 647-656.	3.1	16
200	Effect of nanoparticle additivation on the microstructure and microhardness of oxide dispersion strengthened steels produced by laser powder bed fusion and directed energy deposition. Procedia CIRP, 2020, 94, 41-45.	1.0	16
201	Influence of sub-monolayer quantities of carbon nanoparticles on the melting and crystallization behavior of polyamide 12 powders for additive manufacturing. Materials and Design, 2021, 201, 109487.	3.3	16
202	Multidimensional thermally-induced transformation of nest-structured complex Au-Fe nanoalloys towards equilibrium. Nano Research, 2022, 15, 581-592.	5.8	16
203	Organic Nanoparticles Generated by Combination of Laser Fragmentation and Ultrasonication in Liquid. Journal of Laser Micro Nanoengineering, 2011, 6, 59-63.	0.4	15
204	A Preliminary Study of Bending Stiffness Alteration in Shape Changing Nitinol Plates for Fracture Fixation. Annals of Biomedical Engineering, 2011, 39, 1546-1554.	1.3	15
205	Nanocomposite Fibre Fabrication via in situ Monomer Grafting and Bonding on Laser-generated Nanoparticles. Journal of Laser Micro Nanoengineering, 2012, 7, 21-27.	0.4	15
206	Sex‧orted Boar Sperm – An Update on Related Production Methods. Reproduction in Domestic Animals, 2015, 50, 56-60.	0.6	15
207	Continuous-Flow Flat Jet Setup for Uniform Pulsed Laser Postprocessing of Colloids. Journal of Physical Chemistry A, 2020, 124, 11125-11132.	1.1	15
208	Role of Citrate and NaBr at the Surface of Colloidal Gold Nanoparticles during Functionalization. Journal of Physical Chemistry C, 2018, 122, 27383-27391.	1.5	14
209	Nanoparticles as potential risk during femtosecond laser ablation. Journal of Laser Applications, 2007, 19, 65-73.	0.8	13
210	Effects of metal ions on fibroblasts and spiral ganglion cells. Journal of Neuroscience Research, 2011, 89, 611-617.	1.3	13
211	Biocompatible Gold Submicrometer Spheres with Variable Surface Texture Fabricated by Pulsed Laser Melting in Liquid. Chemistry Letters, 2014, 43, 1502-1504.	0.7	13
212	Gold–Manganese Oxide Core–Shell Nanoparticles Produced by Pulsed Laser Ablation in Water. Journal of Physical Chemistry C, 2016, 120, 22635-22645.	1.5	13
213	Triplex-hybridizing bioconjugated gold nanoparticles for specific Y-chromosome sequence targeting of bull spermatozoa. Analyst, The, 2017, 142, 2020-2028.	1.7	13
214	Development of A Low-Cost FPGA-Based Measurement System for Real-Time Processing of Acoustic Emission Data: Proof of Concept Using Control of Pulsed Laser Ablation in Liquids. Sensors, 2018, 18, 1775.	2.1	13
215	Origin of Laser-Induced Colloidal Gold Surface Oxidation and Charge Density, and Its Role in Oxidation Catalysis. Journal of Physical Chemistry C, 2020, 124, 20981-20990.	1.5	13
216	Composition and structure of magnetic high-temperature-phase, stable Fe–Au core–shell nanoparticles with zero-valent bcc Fe core. Nanoscale Advances, 2020, 2, 3912-3920.	2.2	13

#	Article	IF	CITATIONS
217	Design of Bi-functional Bioconjugated Gold Nanoparticles by Pulsed Laser Ablation with Minimized Degradation. Journal of Laser Micro Nanoengineering, 2011, 6, 124-130.	0.4	13
218	Laser Micromachining of Metals with Ultra-Short Pulses: Factors Limiting the Scale-Up Process. Journal of Laser Micro Nanoengineering, 2017, 12, .	0.4	13
219	Enhancement of Proton Therapy Efficiency by Noble Metal Nanoparticles Is Driven by the Number and Chemical Activity of Surface Atoms. Small, 2022, 18, e2106383.	5.2	13
220	Co-transfection of plasmid DNA and laser-generated gold nanoparticles does not disturb the bioactivity of GFP-HMGB1 fusion protein. Journal of Nanobiotechnology, 2009, 7, 6.	4.2	12
221	An approach for transparent and electrically conducting coatings: A transparent plastic varnish with nanoparticulate magnetic additives. Thin Solid Films, 2015, 595, 96-107.	0.8	12
222	Laser-synthesized ligand-free Au nanoparticles for contrast agent applications in computed tomography and magnetic resonance imaging. Journal of Materials Chemistry B, 2016, 4, 6413-6427.	2.9	12
223	Upconversion Nanoparticles Synthesized by Ultrashort Pulsed Laser Ablation in Liquid: Effect of the Stabilizing Environment. ChemPhysChem, 2017, 18, 1210-1216.	1.0	12
224	A quarter-century of nanoparticle generation by lasers in liquids: Where are we now, and what's next?. Journal of Colloid and Interface Science, 2017, 489, 1-2.	5.0	12
225	Colloids created by light: Laser-generated nanoparticles for applications in biology and medicine. Materials Today: Proceedings, 2017, 4, S93-S100.	0.9	12
226	Surface Engineering of Gold Nanoclusters Protected with 11-Mercaptoundecanoic Acid for Photoluminescence Sensing. ACS Applied Nano Materials, 2021, 4, 3197-3203.	2.4	12
227	How the Physicochemical Properties of the Bulk Material Affect the Ablation Crater Profile, Mass Balance, and Bubble Dynamics During Singleâ€Pulse, Nanosecond Laser Ablation in Water. Chemistry - A European Journal, 2021, 27, 5978-5991.	1.7	12
228	Ultrafast-Laser-Processed Zirconia and its Adhesion to Dental Cement. Journal of Laser Micro Nanoengineering, 2008, 3, 78-83.	0.4	12
229	Engineering of Cation Occupancy of CoFe ₂ O ₄ Oxidation Catalysts by Nanosecond, Singleâ€Pulse Laser Excitation in Water. ChemCatChem, 2022, 14, .	1.8	12
230	Acoustic emission control avoids fluence shifts caused by target runaway during laser synthesis of colloids. Applied Surface Science, 2019, 479, 887-895.	3.1	11
231	How colloidal surface additivation of polyamide 12 powders with well-dispersed silver nanoparticles influences the crystallization already at low 0.01 vol%. Additive Manufacturing, 2020, 36, 101419.	1.7	11
232	Picosecond laser-induced surface structures on alloys in liquids and their influence on nanoparticle productivity during laser ablation. Optics Express, 2020, 28, 2909.	1.7	11
233	Time resolved studies reveal the origin of the unparalleled high efficiency of one nanosecond laser ablation in liquids. Opto-Electronic Advances, 2022, 5, 210053-210053.	6.4	11
234	Optimizing inâ€Vitro Impedance and Physicoâ€Chemical Properties of Neural Electrodes by Electrophoretic Deposition of Pt Nanoparticles. ChemPhysChem, 2017, 18, 1108-1117.	1.0	10

#	Article	IF	CITATIONS
235	Identification of the main mixing process in the synthesis of alloy nanoparticles by laser ablation of compacted micropowder mixtures. Journal of Materials Science, 2022, 57, 3041-3056.	1.7	10
236	Laserâ€Based Generation of Nanocomposites without Matrixâ€Coupling Agents for Bioactive Medical Devices. Chemie-Ingenieur-Technik, 2013, 85, 740-746.	0.4	9
237	Mechanism of Laser-Induced Bulk and Surface Defect Generation in ZnO and TiO ₂ Nanoparticles: Effect on Photoelectrochemical Performance. ACS Applied Energy Materials, 0, , .	2.5	9
238	Matrix-specific mechanism of Fe ion release from laser-generated 3D-printable nanoparticle-polymer composites and their protein adsorption properties. Nanotechnology, 2020, 31, 405703.	1.3	9
239	Laser-based Fragmentation of Microparticles for Nanoparticle Generation. Journal of Laser Micro Nanoengineering, 2008, 3, 100-105.	0.4	9
240	Powder preparation during ball milling and laser additive manufacturing of aluminum matrix nanocomposites: Powder properties, processability and mechanical property. Advanced Powder Technology, 2022, 33, 103687.	2.0	9
241	Cysteine-containing oligopeptide β-sheets as redispersants for agglomerated metal nanoparticles. Journal of Materials Chemistry A, 2015, 3, 17612-17619.	5.2	8
242	Excellent Oxygen Reduction Reaction Performance in Self-Assembled Amyloid-β/Platinum Nanoparticle Hybrids with Effective Platinum–Nitrogen Bond Formation. ACS Applied Energy Materials, 2019, 2, 6536-6541.	2.5	8
243	Evaluation of essential powder properties through complementary particle size analysis methods for laser powder bed fusion of polymers. Procedia CIRP, 2020, 94, 116-121.	1.0	8
244	Use of (nano-)additives in Laser Powder Bed Fusion of Al powder feedstocks: research directions within the last decade. Procedia CIRP, 2020, 94, 11-16.	1.0	8
245	Manipulation of the Size and Phase Composition of Yttrium Iron Garnet Nanoparticles by Pulsed Laser Post-Processing in Liquid. Molecules, 2020, 25, 1869.	1.7	8
246	Rapid Nanoparticle-Polymer Composites Prototyping by Laser Ablation in Liquids. , 2015, , 2131-2141.		8
247	Influence of Pt Alloying on the Fluorescence of Fully Inorganic, Colloidal Gold Nanoclusters. ChemPhysChem, 2022, 23, .	1.0	8
248	Reduced wear and adhesion forces by laser dispersing of ceramics. Physics Procedia, 2010, 5, 431-437.	1.2	7
249	Softlithographic partial integration of surfaceâ€active nanoparticles in a PDMS matrix for microfluidic biodevices. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 898-903.	0.8	7
250	Tribological properties of laser-generated hard ceramic particles in a gear drive contact. Applied Surface Science, 2019, 467-468, 811-818.	3.1	7
251	Discrimination of ablation, shielding, and interface layer effects on the steady-state formation of persistent bubbles under liquid flow conditions during laser synthesis of colloids. Journal of Flow Chemistry, 2021, 11, 773-792.	1.2	7
252	Triple Modification of Alginate Hydrogels by Fibrin Blending, Iron Nanoparticle Embedding, and Serum Protein 0ating Synergistically Promotes Strong Endothelialization. Advanced Materials Interfaces, 2021, 8, 2002015.	1.9	7

#	Article	IF	CITATIONS
253	Laser cutting of wood and wood composites - Evaluation of cut quality and comparison to conventional wood cutting techniques. , 2004, , .		6
254	Laser-induced growth of YVO ₄ :Eu ³⁺ nanoparticles from sequential flowing aqueous suspension. RSC Advances, 2017, 7, 9002-9008.	1.7	6
255	Gradual modification of ITO particle's crystal structure and optical properties by pulsed UV laser irradiation in a free liquid jet. Dalton Transactions, 2017, 46, 6039-6048.	1.6	6
256	Recent progress in laser materials processing and synthesis. Applied Surface Science, 2020, 513, 145762.	3.1	6
257	Aluminaâ€Protected, Durable and Photostable Zinc Sulfide Particles from Scalable Atomic Layer Deposition. Advanced Functional Materials, 2021, 31, 2009323.	7.8	6
258	Nanoparticle Additivation Effects on Laser Powder Bed Fusion of Metals and Polymers—A Theoretical Concept for an Inter-Laboratory Study Design All Along the Process Chain, Including Research Data Management. Materials, 2021, 14, 4892.	1.3	6
259	Formation of Fe-Ni Nanoparticle Strands in Macroscopic Polymer Composites: Experiment and Simulation. Nanomaterials, 2021, 11, 2095.	1.9	6
260	Comparing Direct and Pulsed-Direct Current Electrophoretic Deposition on Neural Electrodes: Deposition Mechanism and Functional Influence. Langmuir, 2021, 37, 9724-9734.	1.6	6
261	164 DEVELOPMENT OF MURINE EMBRYOS AFTER INJECTION OF UNCOATED GOLD AND SILVER NANOPARTICLES. Reproduction, Fertility and Development, 2010, 22, 240.	0.1	6
262	Welding of polymer and wood composites using laser radiation. , 2003, , .		5
263	Laserfragmentierung von anorganischen und organischen Mikropartikel‣uspensionen zu Nanopartikelâ€Kolloiden. Chemie-Ingenieur-Technik, 2010, 82, 317-326.	0.4	5
264	Development of new processes for welding of thermal Al–Cu solar absorbers using diode lasers. Journal of Laser Applications, 2012, 24, 052002.	0.8	5
265	How Electrophoretic Deposition with Ligand-Free Platinum Nanoparticles Affects Contact Angle. Key Engineering Materials, 0, 654, 218-223.	0.4	5
266	Iron Nanoparticle Composite Hydrogels for Studying Effects of Iron Ion Release on Red Blood Cell <i>In Vitro</i> Production. ACS Applied Bio Materials, 2020, 3, 4766-4778.	2.3	5
267	NANOPARTICLES DURING LASER CLEANING OF DECORATION SAMPLES OF SIGISMUND'S CHAPEL. , 2007, , 197-208.		5
268	Influence of Gold/Silver Ratio in Ablative Nanoparticles on Their Interaction with Aptamers and Functionality of the Obtained Conjugates. Bioconjugate Chemistry, 2021, 32, 2439-2446.	1.8	5
269	Electrophoretic Deposition of Platinum Nanoparticles using Ethanol-Water Mixtures Significantly Reduces Neural Electrode Impedance. Journal of the Electrochemical Society, 2022, 169, 022504.	1.3	5
270	Advances in pulsed laser synthesis of nanoparticles in liquids. Science China: Physics, Mechanics and Astronomy, 2022, 65, .	2.0	5

#	Article	IF	CITATIONS
271	Contribution to the age determination of fingerprint constituents using laser fluorescence spectroscopy and confocal laser scanning microscopy. , 2004, , .		4
272	Scale-up of nanoparticle production during laser ablation of ceramics in liquid media. , 2008, , .		4
273	Water-based, surfactant-free cytocompatible nanoparticle-microgel-composite biomaterials – rational design by laser synthesis, processing into fiber pads and impact on cell proliferation. BioNanoMaterials, 2017, 18, .	1.4	4
274	The effect of downstream laser fragmentation on the specific surface area and photoelectrochemical performance of barium tantalum oxynitride. Applied Surface Science, 2020, 510, 145429.	3.1	4
275	Production of Nanoparticles with High Repetition Rate Picosecond Laser. Journal of Laser Micro Nanoengineering, 2007, 2, 230-233.	0.4	4
276	Continuous production and online-characterization of nanoparticles from ultrafast laser ablation and laser cracking. , 2005, , .		3
277	Effect of various dispersing agents on the stability of silver microparticle dispersion and the formulation of uniform silver film by laser melting. Journal of Laser Applications, 2016, 28, .	0.8	3
278	Scaling up colloidal surface additivation of polymer powders for laser powder bed fusion. Procedia CIRP, 2020, 94, 110-115.	1.0	3
279	Quality over Quantity: How Different Dispersion Qualities of Minute Amounts of Nano-Additives Affect Material Properties in Powder Bed Fusion of Polyamide 12. Materials, 2021, 14, 5322.	1.3	3
280	Ultrafast cold-brewing of coffee by picosecond-pulsed laser extraction. Npj Science of Food, 2022, 6, 19.	2.5	3
281	Coâ€doping of iron and copper ions in nanosized bioactive glass by reactive laser fragmentation in liquids. Journal of Biomedical Materials Research - Part A, 2022, , .	2.1	3
282	The radiosensitizing effect of platinum nanoparticles in proton irradiations is not caused by an enhanced proton energy deposition at the macroscopic scale. Physics in Medicine and Biology, 2022, 67, 155023.	1.6	3
283	Adding functionality to metal nanoparticles during femtosecond laser ablation in liquids. , 2007, , .		2
284	Health risks of nanoparticulate emissions during femtosecond and picosecond pulsed laser machining. , 2009, , .		2
285	Quantification of colloidal and intracellular gold nanomarkers down to the single particle level using confocal microscopy. Proceedings of SPIE, 2010, , .	0.8	2
286	Editorial $\hat{a} \in$ BioNanomaterials Drive Innovation in Clinical Research. BioNanoMaterials, 2013, 14, 1-2.	1.4	2
287	Templated Dealloying: Designing Ultrastructures by Memory Effect. Crystal Growth and Design, 2019, 19, 4957-4963.	1.4	2
288	Frontispiece: Roomâ€Temperature Laser Synthesis in Liquid of Oxide, Metalâ€Oxide Coreâ€Shells, and Doped Oxide Nanoparticles. Chemistry - A European Journal, 2020, 26, .	1.7	2

#	Article	IF	CITATIONS
289	Laser cutting and joining of wooden materials: How both processes are determined by the heat affected zone. , 2006, , .		2
290	Protection of the environment and saving costs using electronic nose during laser material processing of polymers and wood composites. , 2004, , .		2
291	Emission Data and Costs for Environmental Measures During Laser Joining of Metals. Journal of Laser Micro Nanoengineering, 2011, 6, 138-145.	0.4	2
292	Laser Synthesis of Colloids: Applications. , 2021, , 1455-1479.		2
293	Laser Synthesis of Colloids: Applications. , 2020, , 1-25.		2
294	Putting fundamentals on multiphase material balance of laser based cutting polymers and natural fiber composites to practical use. , 2003, , .		1
295	<title>Nano and microparticles emission during laser cleaning of stone</title> ., 2006, , .		1
296	Nanoparticles - Potential risk during pulsed laser ablation. , 2007, , .		1
297	3. Laser-generated bioactive hydrogels as ion-release systems for burn wound therapy. , 2015, , 199-216.		1
298	Pore penetration of porous catalyst supports by in-situ-adsorbed, agglomeration-quenched nanoparticles from pulsed laser ablation in supercritical CO2. Journal of Supercritical Fluids, 2021, 169, 105100.	1.6	1
299	How the crystal structure and phase segregation of Au–Fe alloy nanoparticles are ruled by the molar fraction and size. , 0, .		1
300	149 UNIMPAIRED DEVELOPMENT OF MURINE EMBRYOS AFTER INJECTION OF SILVER NANOPARTICLES. Reproduction, Fertility and Development, 2013, 25, 222.	0.1	1
301	Advanced laser renovation of old paintings, paper, parchment and metal objects. , 2008, , 263-269.		1
302	Colloidal nanoparticles for heterogeneous catalysis. SPIE Newsroom, 0, , .	0.1	1
303	Microshaping of densely sintered zirconia ceramic using femtosecond lasers. , 2005, , .		0
304	Particulate emission during laser cleaning of stone. , 0, , .		0
305	Picosecond and femtosecond laser machining may cause health risks related to nanoparticle emission. , 2009, , .		Ο
306	A polymer based local drug delivery system on plasma activated silicon implant surfaces. IFMBE Proceedings, 2009, , 223-225.	0.2	0

#	Article	IF	CITATIONS
307	Embedding laser-generated nanoparticles into bioactive polymers for medical devices. , 2010, , .		0
308	Laser cladding of metal-ceramic nanocomposite layers for cutting applications. , 2011, , .		0
309	Standardized Emission Quantification and Control of Costs for Environmental Measures. Physics Procedia, 2011, 12, 31-39.	1.2	0
310	Durchflussreaktor zur Synthese von Nanopartikel-Biokonjugaten für die Reproduktionsbiologie. Chemie-Ingenieur-Technik, 2012, 84, 1187-1187.	0.4	0
311	Evaluation of pulsed laser ablation in liquids generated gold nanoparticles as novel transfection tools: efficiency and cytotoxicity. , 2014, , .		0
312	Process-stable, highly pure nanomaterials by pilot-scale, continuous high-power laser production (Conference Presentation). , 2017, , .		0
313	Neue Nanokomposite für die additive Fertigung. Chemie-Ingenieur-Technik, 2018, 90, 1193-1193.	0.4	0
314	Aptamers on laserâ€generated gold nanoparticles – A novel approach towards green pointâ€ofâ€care – diagnostic tools for biotechnology. Chemie-Ingenieur-Technik, 2020, 92, 1220-1221.	0.4	0
315	Plasmonic Seasoning: Giving Color to Desktop Laser 3D Printed Polymers by Highly Dispersed Nanoparticles (Advanced Optical Materials 15/2020). Advanced Optical Materials, 2020, 8, 2070060.	3.6	0
316	Single-Particle Hyperspectral Imaging Reveals Kinetics of Silver Ion Leaching from Alloy Nanoparticles. ECS Meeting Abstracts, 2021, MA2021-01, 793-793.	0.0	0
317	Intelligent, low-cost system for fume control during laser material processing. , 2005, , .		0
318	Comparison of linear and spinning laser beam technologies for welding of thermoplastics to timber. , 2006, , .		0
319	Improving polymer surfaces using laser dispersion of ceramic micro and nanoparticles. , 2006, , .		0
320	FEMTOSECOND LASER CLEANING OF METALLIC ANTIQUE ARTWORKS – ADVANTAGES, LIMITS AND ECONOMI ASPECTS. , 2007, , 209-218.	С	0
321	Production and electrostatic stabilization of corundum nanoparticles during laser ablation in acidic liquids. , 2009, , .		0
322	Development of new processes for welding of thermal Al-Cu solar absorbers using diode lasers. , 2011, , .		0
323	Rapid Nanoparticle-Polymer Composites Prototyping by Laser Ablation in Liquids. , 2014, , 1-12.		0
324	Size-Selective Optical Printing of Silicon Nanoparticles through Their Dipolar Magnetic Resonance. , 2019, , .		0

#	Article	IF	CITATIONS
325	Toxicity of Colloidal Alloy Nanoparticles. , 2020, , 433-449.		Ο
326	Regeneration of Reactive Pd Surfaces in Au-Pd Nanoparticles after Electrochemical Aging. ECS Meeting Abstracts, 2020, MA2020-01, 2665-2665.	0.0	0
327	Size-selective optical printing of silicon nanoparticles through their dipolar magnetic resonance. , 2020, , .		Ο
328	Fully-Automatic Benchtop Machine for the Production of Nanoparticle Suspensions. , 2021, , .		0