
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7055620/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Case for Clinical Trials with Novel GABAergic Drugs in Diabetes Mellitus and Obesity. Life, 2022, 12, 322.	1.1	1
2	Phenotypical Screening on Neuronal Plasticity in Hippocampal-Prefrontal Cortex Connectivity Reveals an Antipsychotic with a Novel Profile. Cells, 2022, 11, 1181.	1.8	1
3	Neuroendocrine regulation of the hypothalamic pituitary adrenocortical axis: where does atriopeptin fit in?. Current Opinion in Endocrine and Metabolic Research, 2022, , 100368.	0.6	0
4	The chilling of adenylyl cyclase 9 and its translational potential. Cellular Signalling, 2020, 70, 109589.	1.7	6
5	Magnocellular Vasopressin and the Mechanism of "Glucocorticoid Escape― Frontiers in Endocrinology, 2019, 10, 422.	1.5	16
6	Direct stimulation of adenylyl cyclase 9 by the fungicide imidazole miconazole. Naunyn-Schmiedeberg's Archives of Pharmacology, 2019, 392, 497-504.	1.4	6
7	Loop F of the GABA A receptor alpha subunit governs GABA potency. Neuropharmacology, 2018, 128, 408-415.	2.0	8
8	Persistent therapeutic effect of a novel α5-GABAA receptor antagonist in rodent preclinical models of vascular cognitive impairment. European Journal of Pharmacology, 2018, 834, 118-125.	1.7	14
9	Auto-inhibition of adenylyl cyclase 9 (AC9) by an isoform-specific motif in the carboxyl-terminal region. Cellular Signalling, 2018, 51, 266-275.	1.7	19
10	Loop-F of the α-subunit determines the pharmacologic profile of novel competitive inhibitors of GABA A receptors. European Journal of Pharmacology, 2017, 798, 129-136.	1.7	6
11	Selective inhibition of extra-synaptic α5-GABA A receptors by S44819, a new therapeutic agent. Neuropharmacology, 2017, 125, 353-364.	2.0	40
12	Behavioural pharmacology of the $\hat{l}\pm 5$ -GABA A receptor antagonist S44819: Enhancement and remediation of cognitive performance in preclinical models. Neuropharmacology, 2017, 125, 30-38.	2.0	17
13	A novel GABAA alpha 5 receptor inhibitor with therapeutic potential. European Journal of Pharmacology, 2015, 764, 497-507.	1.7	23
14	Egis-11150: A candidate antipsychotic compound with procognitive efficacy in rodents. Neuropharmacology, 2013, 64, 254-263.	2.0	17
15	Optical Waveguide Lightmode Spectroscopic Techniques for Investigating Membrane-Bound Ion Channel Activities. PLoS ONE, 2013, 8, e81398.	1.1	6
16	Synthesis and In Vitro Evaluation of Oxindole Derivatives as Potential Radioligands for 5-HT ₇ Receptor Imaging with PET. ACS Chemical Neuroscience, 2012, 3, 1002-1007.	1.7	29
17	Interactions between intracellular free Ca2+ and cyclic AMP in neuroendocrine cells. Cell Calcium, 2012, 51, 260-266.	1.1	15
18	New paradigms in cAMP signalling. Molecular and Cellular Endocrinology, 2012, 353, 3-9.	1.6	36

#	Article	IF	CITATIONS
19	Dex-ras1 and Serum- and Glucocorticoid-inducible Protein Kinase 1: Regulation of Expression by Dexamethasone in HEK293 Cells. Neurochemical Research, 2008, 33, 609-613.	1.6	5
20	Cellular Localisation of Adenylyl Cyclase: A Post-genome Perspective. Neurochemical Research, 2006, 31, 287-295.	1.6	21
21	Distinct stoichiometry of BKCa channel tetramer phosphorylation specifies channel activation and inhibition by cAMP-dependent protein kinase. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 11897-11902.	3.3	98
22	Adenylyl Cyclase. , 2004, , 35-40.		0
23	Déjà vu: angiotensin and stress. Trends in Endocrinology and Metabolism, 2003, 14, 249-250.	3.1	1
24	Small Ligands Modulating the Activity of Mammalian Adenylyl Cyclases: A Novel Mode of Inhibition by Calmidazolium. Molecular Pharmacology, 2003, 63, 624-631.	1.0	26
25	Short-Term Plasticity of Cyclic Adenosine 3′,5′-Monophosphate Signaling in Anterior Pituitary Corticotrope Cells: The Role of Adenylyl Cyclase Isotypes. Molecular Endocrinology, 2003, 17, 692-703.	3.7	38
26	Posttranslational Modulation of Glucocorticoid Feedback Inhibition at the Pituitary Level. Endocrinology, 2002, 143, 3796-3801.	1.4	19
27	Functional plasticity of cyclic AMP hydrolysis in rat adenohypophysial corticotroph cells. Cellular Signalling, 2002, 14, 445-452.	1.7	18
28	Characterisation of Human Adenylyl Cyclase IX Reveals Inhibition by Ca2+/Calcineurin and Differential mRNA Plyadenylation. Journal of Neurochemistry, 2002, 75, 1358-1367.	2.1	46
29	Reciprocal regulation of calcium dependent and calcium independent cyclic AMP hydrolysis by protein phosphorylation. Journal of Neurochemistry, 2002, 81, 422-433.	2.1	29
30	Alternative splicing determines sensitivity of murine calciumâ€activated potassium channels to glucocorticoids. Journal of Physiology, 2001, 537, 57-68.	1.3	53
31	Molecular Diversity of Cyclic AMP Signalling. Frontiers in Neuroendocrinology, 2000, 21, 103-132.	2.5	141
32	Molecular Components of Large Conductance Calcium-Activated Potassium (BK) Channels in Mouse Pituitary Corticotropes. Molecular Endocrinology, 1999, 13, 1728-1737.	3.7	66
33	Circadian changes of type II adenylyl cyclase mRNA in the rat suprachiasmatic nuclei. Brain Research, 1998, 810, 279-282.	1.1	10
34	Calcium Regulation of Adenylyl Cyclase Relevance for Endocrine Control. Trends in Endocrinology and Metabolism, 1997, 8, 7-14.	3.1	38
35	8 Calcium control of adenylyl cyclase: The calcineurin connection. Advances in Second Messenger and Phosphoprotein Research, 1997, 32, 153-172.	4.5	36
36	Calcium Checks cyclic AMP - Corticosteroid Feedback in Adenohypophysial Corticotrophs. Journal of Neuroendocrinology, 1996, 8, 659-672.	1.2	25

#	Article	IF	CITATIONS
37	Glucocorticoids Block Protein Kinase A Inhibition of Calcium-activated Potassium Channels. Journal of Biological Chemistry, 1996, 271, 9197-9200.	1.6	77
38	Calcineurin Feedback Inhibition of Agonist-evoked cAMP Formation. Journal of Biological Chemistry, 1995, 270, 28055-28061.	1.6	80
39	Vasupressin and the Endocrine Response To Stress. Animal Biology, 1994, 45, 98-102.	0.4	3
40	Selective Enhancement of an A Type Potassium Current by Dexamethasone in a Corticotroph Cell Line. Journal of Neuroendocrinology, 1994, 6, 305-315.	1.2	15
41	Glucocorticoid Negative Feedback in Pituitary Corticotropes. Pivotal Role for Calcineurin Inhibition of Adenylyl Cyclase. Annals of the New York Academy of Sciences, 1994, 746, 453-455.	1.8	11
42	Early Glucocorticoid Inhibition of Hormone Release in Pituitary Corticotrope Cells Is Voltage Dependent. Annals of the New York Academy of Sciences, 1994, 746, 456-459.	1.8	3
43	Vasopressinergic Control of Pituitary Adrenocorticotropin Secretion Comes of Age. Frontiers in Neuroendocrinology, 1993, 14, 76-122.	2.5	578
44	Early glucocorticoid induction of calmodulin and its suppression by corticotropin-releasing factor in pituitary corticotrope tumor (AtT20) cells. Biochemical and Biophysical Research Communications, 1992, 189, 1382-1388.	1.0	19
45	The Hypothalamus Is not the Origin of Vasopressin and Oxytocin in the Rat Pineal Gland. Neuroendocrinology, 1991, 53, 523-527.	1.2	12
46	Localization of lipocortin-1 in rat hypothalamus and pituitary gland. Biochemical Society Transactions, 1990, 18, 1236-1237.	1.6	11
47	Evidence for Distinct Glucocorticoid and Guanine 3′,5′-Monophosphate-Effected Inhibition of Stimulated Adrenocorticotropin Releasein Vitro*. Endocrinology, 1990, 126, 1355-1360.	1.4	23
48	Rapid as well as Delayed Inhibitory Effects of Glucocorticoid Hormones on Pituitary Adrenocorticotropic Hormone Release Are Mediated by Type II Glucocorticoid Receptors and Require Newly Synthesized Messenger Ribonucleic Acid as well as Protein*. Endocrinology, 1989, 125, 308-313.	1.4	108
49	Guanosine 3′:5′cyclic monophosphate and activators of guanylate cyclase inhibit secretagogue-induced corticotropin release by rat anterior pituitary cells. Biochemical and Biophysical Research Communications, 1989, 158, 824-830.	1.0	28
50	Hypophysiotrophic function of vasopressin and oxytocin. Brain Research Bulletin, 1988, 20, 729-736.	1.4	22
51	Neurotensin in the rat median eminence: the possible sources of neurotensin-like fibers and varicosities in the external layer. Brain Research, 1987, 416, 129-135.	1.1	21
52	Receptors Mediating the CRH Effects of Vasopressin and Oxytocin. Annals of the New York Academy of Sciences, 1987, 512, 195-204.	1.8	30
53	Atrial Natriuretic Peptide in the Median Eminence Is of Paraventricular Nucleus Origin. Neuroendocrinology, 1987, 46, 542-544.	1.2	45
54	Galanin in the Hypothalamo-Hypophyseal System. Neuroendocrinology, 1987, 46, 417-423.	1.2	104

#	Article	IF	CITATIONS
55	Predominant Release of Vasopressin vs. Corticotropin-Releasing Factor from the Isolated Median Eminence after Adrenalectomy. Neuroendocrinology, 1986, 43, 245-251.	1.2	76
56	Magnocellular axons in passage through the median eminence release vasopressin. Nature, 1986, 319, 326-329.	13.7	200
57	Hypothalamic Control of Adrenocorticotropin Secretion: Advances since the Discovery of 41-Residue Corticotropin-Releasing Factor. Endocrine Reviews, 1986, 7, 351-378.	8.9	887
58	Pituitary Receptors for Corticotropin-Releasing Factor: no Effect of Vasopressin on Binding or Activation of Adenylate Cyclase. Neuroendocrinology, 1984, 39, 162-169.	1.2	63
59	Comparative localization of neurons containing ovine corticotropin releasing factor (CRF)-like and neurophysin-like immunoreactivity in the diencephalon of the pigeon (Columba livia domestica). Journal of Comparative Neurology, 1984, 228, 69-80.	0.9	36
60	Evidence that the effects of arginine-8-vasopressin (AVP) on pituitary corticotropin (ACTH) release are mediated by a novel type of receptor. Peptides, 1984, 5, 519-522.	1.2	101
61	Characterization of high affinity binding sites for vasopressin in bovine adrenal medulla. Neuropeptides, 1984, 4, 413-420.	0.9	25
62	Novel Ligand Specificity of Pituitary Vasopressin Receptors in the Rat. Neuroendocrinology, 1984, 39, 186-188.	1.2	166
63	Oxytocin as well as vasopressin potentiate ovine CRF in vitro. Peptides, 1983, 4, 411-415.	1.2	127
64	Ultrastructural demonstration of ovine CRF-like immunoreactivity (oCRF-LI) in the rat hypothalamus: processes of magnocellular neurons establish membrane specializations with parvocellular neurons containing oCRF-LI. Regulatory Peptides, 1983, 6, 179-188.	1.9	31
65	Topography of the Somatostatin-Immunoreactive Fibers to the Stalk-Median Eminence of the Rat. Neuroendocrinology, 1983, 37, 1-8.	1.2	63
66	Immunoreactive Corticotropin-Releasing Hormone in the Hypothalamoinfundibular Tract. Neuroendocrinology, 1983, 36, 415-423.	1.2	186
67	Neonatal Treatment with Monosodium-L-Glutamate: Differential Effects on Growth Hormone and Prolactin Release Induced by Morphine. Neuroendocrinology, 1982, 35, 231-235.	1.2	23
68	Adenylyl cyclase type 9. The AFCS-nature Molecule Pages, 0, , .	0.2	2