Michael T Marshall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7055461/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Global phenological response to climate change in crop areas using satellite remote sensing of vegetation, humidity and temperature over 26years. Remote Sensing of Environment, 2012, 126, 174-183.	4.6	130
2	Advantage of hyperspectral EO-1 Hyperion over multispectral IKONOS, GeoEye-1, WorldView-2, Landsat ETM+, and MODIS vegetation indices in crop biomass estimation. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 108, 205-218.	4.9	106
3	Phenology of short vegetation cycles in a Kenyan rangeland from PlanetScope and Sentinel-2. Remote Sensing of Environment, 2020, 248, 112004.	4.6	92
4	How Universal Is the Relationship between Remotely Sensed Vegetation Indices and Crop Leaf Area Index? A Global Assessment. Remote Sensing, 2016, 8, 597.	1.8	91
5	A framework to assess national level vulnerability from the perspective of food security: The case of coral reef fisheries. Environmental Science and Policy, 2012, 23, 95-108.	2.4	87
6	Developing in situ Non-Destructive Estimates of Crop Biomass to Address Issues of Scale in Remote Sensing, 2015, 7, 808-835.	1.8	72
7	What Four Decades of Earth Observation Tell Us about Land Degradation in the Sahel?. Remote Sensing, 2015, 7, 4048-4067.	1.8	70
8	Climatic, Socio-economic, and Health Factors Affecting Human Vulnerability to Cholera in the Lake Victoria Basin, East Africa. Ambio, 2007, 36, 350-358.	2.8	63
9	Hyperspectral narrowband and multispectral broadband indices for remote sensing of crop evapotranspiration and its components (transpiration and soil evaporation). Agricultural and Forest Meteorology, 2016, 218-219, 122-134.	1.9	63
10	A sweet deal? Sugarcane, water and agricultural transformation in Sub-Saharan Africa. Global Environmental Change, 2016, 39, 181-194.	3.6	59
11	Vulnerability to epidemic malaria in the highlands of Lake Victoria basin: the role of climate change/variability, hydrology and socio-economic factors. Climatic Change, 2010, 99, 473-497.	1.7	52
12	Examining evapotranspiration trends in Africa. Climate Dynamics, 2012, 38, 1849-1865.	1.7	51
13	Mapping daily and seasonal evapotranspiration from irrigated crops using global climate grids and satellite imagery: Automation and methods comparison. Water Resources Research, 2016, 52, 7311-7326.	1.7	46
14	Optimizing a remote sensing production efficiency model for macro-scale GPP and yield estimation in agroecosystems. Remote Sensing of Environment, 2018, 217, 258-271.	4.6	43
15	Field-level crop yield estimation with PRISMA and Sentinel-2. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 187, 191-210.	4.9	38
16	Improving operational land surface model canopy evapotranspiration in Africa using a direct remote sensing approach. Hydrology and Earth System Sciences, 2013, 17, 1079-1091.	1.9	34
17	Crop area estimation using high and medium resolution satellite imagery in areas with complex topography. Journal of Geophysical Research, 2008, 113, .	3.3	33
18	Global assessment of Vegetation Index and Phenology Lab (VIP) and Global Inventory Modeling and Mapping Studies (GIMMS) version 3 products. Biogeosciences, 2016, 13, 625-639.	1.3	29

MICHAEL T MARSHALL

#	Article	IF	CITATIONS
19	Application of the MODIS MOD 17 Net Primary Production product in grassland carrying capacity assessment. International Journal of Applied Earth Observation and Geoinformation, 2019, 78, 66-76.	1.4	29
20	Testing a high-resolution satellite interpretation technique for crop area monitoring in developing countries. International Journal of Remote Sensing, 2011, 32, 7997-8012.	1.3	18
21	A blended census and multiscale remote sensing approach to probabilistic cropland mapping in complex landscapes. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 161, 233-245.	4.9	18
22	Biomass Modeling of Four Leading World Crops Using Hyperspectral Narrowbands in Support of HyspIRI Mission. Photogrammetric Engineering and Remote Sensing, 2014, 80, 757-772.	0.3	14
23	Crowd-Driven and Automated Mapping of Field Boundaries in Highly Fragmented Agricultural Landscapes of Ethiopia with Very High Spatial Resolution Imagery. Remote Sensing, 2019, 11, 2082.	1.8	14
24	Tracking crop phenology in a highly dynamic landscape with knowledge-based Landsat–MODIS data fusion. International Journal of Applied Earth Observation and Geoinformation, 2022, 106, 102670.	1.4	12
25	On Parameterizing Soil Evaporation in a Direct Remote Sensing Model of ET: PTâ€JPL. Water Resources Research, 2020, 56, e2019WR026290.	1.7	11
26	Continuous and consistent land use/cover change estimates using socio-ecological data. Earth System Dynamics, 2017, 8, 55-73.	2.7	6
27	A global assessment of PT-JPL soil evaporation in agroecosystems with optical, thermal, and microwave satellite data. Agricultural and Forest Meteorology, 2021, 306, 108455.	1.9	4
28	HyNutri: Estimating the Nutritional Composition of Wheat from Multi-Temporal Prisma Data. , 2021, , .		1