
Junlong Geng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7055321/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Specific Detection of Integrin α _v β ₃ by Light-Up Bioprobe with Aggregation-Induced Emission Characteristics. Journal of the American Chemical Society, 2012, 134, 9569-9572.	6.6	378
2	Photostable fluorescent organic dots with aggregation-induced emission (AIE dots) for noninvasive long-term cell tracing. Scientific Reports, 2013, 3, 1150.	1.6	319
3	Ultrabright Organic Dots with Aggregationâ€Induced Emission Characteristics for Realâ€Time Twoâ€Photon Intravital Vasculature Imaging. Advanced Materials, 2013, 25, 6083-6088.	11.1	255
4	Biocompatible Conjugated Polymer Nanoparticles for Efficient Photothermal Tumor Therapy. Small, 2015, 11, 1603-1610.	5.2	168
5	Multifunctional Conjugated Polymer Nanoparticles for Imageâ€Guided Photodynamic and Photothermal Therapy. Small, 2017, 13, 1602807.	5.2	147
6	Graphene Quantum Dots from Polycyclic Aromatic Hydrocarbon for Bioimaging and Sensing of Fe ³⁺ and Hydrogen Peroxide. Particle and Particle Systems Characterization, 2013, 30, 1086-1092.	1.2	140
7	Lipidâ€PEGâ€Folate Encapsulated Nanoparticles with Aggregation Induced Emission Characteristics: Cellular Uptake Mechanism and Twoâ€Photon Fluorescence Imaging. Small, 2012, 8, 3655-3663.	5.2	139
8	Rational design of fluorescent light-up probes based on an AIE luminogen for targeted intracellular thiol imaging. Chemical Communications, 2014, 50, 295-297.	2.2	95
9	Conjugated polymer nanoparticles for photoacoustic vascular imaging. Polymer Chemistry, 2014, 5, 2854-2862.	1.9	93
10	A tetraphenylethene-based red luminophor for an efficient non-doped electroluminescence device and cellular imaging. Journal of Materials Chemistry, 2012, 22, 11018.	6.7	85
11	Eccentric Loading of Fluorogen with Aggregationâ€Induced Emission in PLGA Matrix Increases Nanoparticle Fluorescence Quantum Yield for Targeted Cellular Imaging. Small, 2013, 9, 2012-2019.	5.2	85
12	Organic molecules with propeller structures for efficient photoacoustic imaging and photothermal ablation of cancer cells. Materials Chemistry Frontiers, 2017, 1, 1556-1562.	3.2	85
13	Conjugated Polymer and Gold Nanoparticle Coâ€loaded PLGA Nanocomposites with Eccentric Internal Nanostructure for Dualâ€modal Targeted Cellular Imaging. Small, 2012, 8, 2421-2429.	5.2	81
14	Near-infrared fluorescence amplified organic nanoparticles with aggregation-induced emission characteristics for in vivo imaging. Nanoscale, 2014, 6, 939-945.	2.8	80
15	Red Emissive Biocompatible Nanoparticles from Tetraphenyletheneâ€Decorated BODIPY Luminogens for Twoâ€Photon Excited Fluorescence Cellular Imaging and Mouse Brain Blood Vascular Visualization. Particle and Particle Systems Characterization, 2014, 31, 481-491.	1.2	78
16	Micelle/Silica Co-protected Conjugated Polymer Nanoparticles for Two-Photon Excited Brain Vascular Imaging. Chemistry of Materials, 2014, 26, 1874-1880.	3.2	65
17	Inverted Opal Fluorescent Film Chemosensor for the Detection of Explosive Nitroaromatic Vapors through Fluorescence Resonance Energy Transfer. Chemistry - A European Journal, 2009, 15, 11507-11514.	1.7	61
18	Water-soluble bioprobes with aggregation-induced emission characteristics for light-up sensing of heparin. Journal of Materials Chemistry B, 2014, 2, 4134-4141.	2.9	58

JUNLONG GENG

#	Article	IF	CITATIONS
19	PEGylated conjugated polyelectrolytes containing 2,1,3-benzoxadiazole units for targeted cell imaging. Polymer Chemistry, 2012, 3, 1567.	1.9	55
20	A bright far-red and near-infrared fluorescent conjugated polyelectrolyte with quantum yield reaching 25%. Chemical Communications, 2013, 49, 1491-1493.	2.2	51
21	A Reversible Dualâ€Response Fluorescence Switch for the Detection of Multiple Analytes. Chemistry - A European Journal, 2010, 16, 3720-3727.	1.7	48
22	Silica shelled and block copolymer encapsulated red-emissive AIE nanoparticles with 50% quantum yield for two-photon excited vascular imaging. Chemical Communications, 2015, 51, 13416-13419.	2.2	45
23	Fluorogen–Peptide Conjugates with Tunable Aggregation-Induced Emission Characteristics for Bioprobe Design. ACS Applied Materials & Interfaces, 2014, 6, 14302-14310.	4.0	42
24	Facile Synthesis of Stable and Water-Dispersible Multihydroxy Conjugated Polymer Nanoparticles with Tunable Size by Dendritic Cross-Linking. ACS Macro Letters, 2012, 1, 927-932.	2.3	41
25	Metal-Enhanced Fluorescence of Conjugated Polyelectrolytes with Self-Assembled Silver Nanoparticle Platforms. Journal of Physical Chemistry B, 2011, 115, 3281-3288.	1.2	39
26	A general approach to prepare conjugated polymer dot embedded silica nanoparticles with a SiO2@CP@SiO2 structure for targeted HER2-positive cellular imaging. Nanoscale, 2013, 5, 8593.	2.8	33
27	3D microscopy and deep learning reveal the heterogeneity of crown-like structure microenvironments in intact adipose tissue. Science Advances, 2021, 7, .	4.7	31
28	Graphene oxide enhanced fluorescence of conjugated polyelectrolytes with intramolecular charge transfer characteristics. Chemical Communications, 2013, 49, 4818.	2.2	30
29	Fluorogens with Aggregation Induced Emission: Ideal Photoacoustic Contrast Reagents Due to Intramolecular Rotation. Journal of Nanoscience and Nanotechnology, 2015, 15, 1864-1868.	0.9	30
30	A water-soluble conjugated polymer brush with multihydroxy dendritic side chains. Polymer Chemistry, 2013, 4, 5243.	1.9	27
31	Conjugated polymer microparticles for selective cancer cell image-guided photothermal therapy. Journal of Materials Chemistry B, 2015, 3, 1135-1141.	2.9	26
32	A highly sensitive fluorescent light-up probe for real-time detection of the endogenous protein target and its antagonism in live cells. Journal of Materials Chemistry B, 2015, 3, 5933-5937.	2.9	21
33	Glycosylated Starâ€5haped Conjugated Oligomers for Targeted Twoâ€Photon Fluorescence Imaging. Chemistry - A European Journal, 2012, 18, 9705-9713.	1.7	20
34	Single molecular hyperbranched nanoprobes for fluorescence and magnetic resonance dual modal imaging. Polymer Chemistry, 2013, 4, 1517-1524.	1.9	19
35	Redâ€Emissive Chemiluminescent Nanoparticles with Aggregationâ€Induced Emission Characteristics for In Vivo Hydrogen Peroxide Imaging. Particle and Particle Systems Characterization, 2014, 31, 1238-1243.	1.2	19
36	A Facile Strategy toward Conjugated Polyelectrolyte with Oligopeptide as Pendants for Biological Applications. ACS Applied Materials & Interfaces, 2013, 5, 4511-4515.	4.0	18

JUNLONG GENG

#	Article	IF	CITATIONS
37	Pyrene-based water dispersible orange emitter for one- and two-photon fluorescence cellular imaging. Polymer Chemistry, 2012, 3, 2464.	1.9	11
38	A Ratiometric Probe Composed of an Anionic Conjugated Polyelectrolyte and a Cationic Phosphorescent Iridium(<scp>III</scp>) Complex for Timeâ€ <scp>R</scp> esolved Detection of Hg(<scp>II</scp>) in Aqueous Media. Macromolecular Bioscience, 2013, 13, 1339-1346.	2.1	9
39	Polymer Nanoparticles: Multifunctional Conjugated Polymer Nanoparticles for Imageâ€Guided Photodynamic and Photothermal Therapy (Small 3/2017). Small, 2017, 13, .	5.2	2
40	Antibody Self-Assembly Maximizes Cytoplasmic Immunostaining Accuracy of Compact Quantum Dots. Chemistry of Materials, 2021, 33, 4877-4889.	3.2	2
41	Inside Cover: Inverted Opal Fluorescent Film Chemosensor for the Detection of Explosive Nitroaromatic Vapors through Fluorescence Resonance Energy Transfer (Chem. Eur. J. 43/2009). Chemistry - A European Journal, 2009, 15, 11410-11410.	1.7	0
42	PEGYLATED CONJUGATED OLIGOMERS FOR TARGETED TWO-PHOTON FLUORESCENCE IMAGING OF CANCER CELLS. Journal of Molecular and Engineering Materials, 2013, 01, 1340011.	0.9	0