
Sergio de-Miguel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7055266/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Variations in biomass of fungal guilds are primarily driven by factors related to soil conditions in Mediterranean Pinus pinaster forests. Biology and Fertility of Soils, 2022, 58, 487-501.	2.3	5
2	The number of tree species on Earth. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	86
3	Historical and future spatially-explicit climate change impacts on mycorrhizal and saprotrophic macrofungal productivity in Mediterranean pine forests. Agricultural and Forest Meteorology, 2022, 319, 108918.	1.9	5
4	Coupled effects of climate teleconnections on drought, Santa Ana winds and wildfires in southern California. Science of the Total Environment, 2021, 765, 142788.	3.9	19
5	Production and turnover of mycorrhizal soil mycelium relate to variation in drought conditions in Mediterranean <i>Pinus pinaster</i> , <i>Pinus sylvestris</i> and <i>Quercus ilex</i> forests. New Phytologist, 2021, 230, 1609-1622.	3.5	25
6	Temporal changes in Mediterranean forest ecosystem services are driven by stand development, rather than by climate-related disturbances. Forest Ecology and Management, 2021, 480, 118623.	1.4	29
7	Associations between climate and earlywood and latewood width in boreal and Mediterranean Scots pine forests. Trees - Structure and Function, 2021, 35, 155-169.	0.9	14
8	Impact of Robinia pseudoacacia stand conversion on soil properties and bacterial community composition in Mount Tai, China. Forest Ecosystems, 2021, 8, .	1.3	10
9	Performance of statistical and machine learning-based methods for predicting biogeographical patterns of fungal productivity in forest ecosystems. Forest Ecosystems, 2021, 8, .	1.3	11
10	UAV-Supported Forest Regeneration: Current Trends, Challenges and Implications. Remote Sensing, 2021, 13, 2596.	1.8	53
11	Changes in global terrestrial live biomass over the 21st century. Science Advances, 2021, 7, eabe9829.	4.7	136
12	Fire behavior modeling for operational decision-making. Current Opinion in Environmental Science and Health, 2021, 23, 100291.	2.1	16
13	Impact of forest thinning on aboveground macrofungal community composition and diversity in Mediterranean pine stands. Ecological Indicators, 2021, 133, 108340.	2.6	9
14	Remotely Sensed Tree Characterization in Urban Areas: A Review. Remote Sensing, 2021, 13, 4889.	1.8	7
15	How does forest management affect fungal diversity and community composition? Current knowledge and future perspectives for the conservation of forest fungi. Forest Ecology and Management, 2020, 457, 117678.	1.4	100
16	Divergent above- and below-ground responses of fungal functional groups to forest thinning. Soil Biology and Biochemistry, 2020, 150, 108010.	4.2	15
17	Future trade-offs and synergies among ecosystem services in Mediterranean forests under global change scenarios. Ecosystem Services, 2020, 45, 101174.	2.3	68
18	Modelling Non-timber Forest Products for Forest Management Planning in Europe. Current Forestry Reports, 2020, 6, 309-322.	3.4	17

SERGIO DE-MIGUEL

#	Article	IF	CITATIONS
19	Late-spring frost risk between 1959 and 2017 decreased in North America but increased in Europe and Asia. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12192-12200.	3.3	140
20	COVID-19 jeopardizes the response to coming natural disasters. Safety Science, 2020, 130, 104861.	2.6	20
21	Emerging threats linking tropical deforestation and the COVID-19 pandemic. Perspectives in Ecology and Conservation, 2020, 18, 243-246.	1.0	65
22	Recent deforestation drove the spike in Amazonian fires. Environmental Research Letters, 2020, 15, 121003.	2.2	46
23	Mushroom productivity trends in relation to tree growth and climate across different European forest biomes. Science of the Total Environment, 2019, 689, 602-615.	3.9	24
24	Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature, 2019, 569, 404-408.	13.7	371
25	Environmental and stand conditions related to <i>Fistulina hepatica</i> heart rot attack on <i>Castanea sativa</i> . Forest Pathology, 2019, 49, e12517.	0.5	7
26	Influence of size and shape of forest inventory units on the layout of harvest blocks in numerical forest planning. European Journal of Forest Research, 2019, 138, 111-123.	1.1	18
27	Improving ecosystem assessments in Mediterranean social-ecological systems: a DPSIR analysis. Ecosystems and People, 2019, 15, 136-155.	1.3	35
28	Yield models for predicting aboveground ectomycorrhizal fungal productivity in Pinus sylvestris and Pinus pinaster stands of northern Spain. Forest Ecosystems, 2019, 6, .	1.3	10
29	Designing a network of green infrastructure to enhance the conservation value of protected areas and maintain ecosystem services. Science of the Total Environment, 2019, 651, 541-550.	3.9	72
30	La repoblación forestal en España: las especies utilizadas desde 1877 a partir de las cartografÃas forestales. Historia Agraria, 2019, , 107-136.	0.3	6
31	Linking fungal dynamics, tree growth and forest management in a Mediterranean pine ecosystem. Forest Ecology and Management, 2018, 422, 223-232.	1.4	27
32	The spatial level of analysis affects the patterns of forest ecosystem services supply and their relationships. Science of the Total Environment, 2018, 626, 1270-1283.	3.9	61
33	Effect of climatic and soil moisture conditions on mushroom productivity and related ecosystem services in Mediterranean pine stands facing climate change. Agricultural and Forest Meteorology, 2018, 248, 432-440.	1.9	42
34	Lack of thinning effects over inter-annual changes in soil fungal community and diversity in a Mediterranean pine forest. Forest Ecology and Management, 2018, 424, 420-427.	1.4	37
35	Assessing the distribution of forest ecosystem services in a highly populated Mediterranean region. Ecological Indicators, 2018, 93, 986-997.	2.6	41
36	Effects of Plot Positioning Errors on the Optimality of Harvest Prescriptions When Spatial Forest Planning Relies on ALS Data. Forests, 2018, 9, 371.	0.9	7

SERGIO DE-MIGUEL

#	Article	IF	CITATIONS
37	Influence of timber harvesting costs on the layout of cuttings and economic return in forest planning based on dynamic treatment units. Forest Systems, 2018, 27, e001.	0.1	5
38	Record breaking mushroom yields in Spain. Fungal Ecology, 2017, 26, 144-146.	0.7	23
39	Mushroom biomass and diversity are driven by different spatio-temporal scales along Mediterranean elevation gradients. Scientific Reports, 2017, 7, 45824.	1.6	47
40	Is silviculture able to enhance wild forest mushroom resources? Current knowledge and future perspectives. Forest Ecology and Management, 2017, 402, 102-114.	1.4	50
41	Using Spatial Optimization to Create Dynamic Harvest Blocks from LiDAR-Based Small Interpretation Units. Forests, 2016, 7, 220.	0.9	9
42	Linkages between climate, seasonal wood formation and mycorrhizal mushroom yields. Agricultural and Forest Meteorology, 2016, 228-229, 339-348.	1.9	18
43	Positive biodiversity-productivity relationship predominant in global forests. Science, 2016, 354, .	6.0	864
44	Meteorological conditions and site characteristics driving edible mushroom production in Pinus pinaster forests of Central Spain. Fungal Ecology, 2016, 23, 30-41.	0.7	37
45	Large-scale reforestation and afforestation policy in Spain: A historical review of its underlying ecological, socioeconomic and political dynamics. Land Use Policy, 2016, 55, 37-48.	2.5	95
46	Mapping Human Impact Using Crowdsourcing. , 2016, , 89-101.		3
47	A Mixed-Effects Model with Different Strategies for Modeling Volume in Cunninghamia lanceolata Plantations. PLoS ONE, 2015, 10, e0140095.	1.1	12
48	Modeling height-diameter curves for prediction. Canadian Journal of Forest Research, 2015, 45, 826-837.	0.8	117
49	Climate-sensitive models for mushroom yields and diversity in Cistus ladanifer scrublands. Agricultural and Forest Meteorology, 2015, 213, 173-182.	1.9	35
50	Evaluation of different approaches to individual tree growth and survival modelling using data collected at irregular intervals – a case study for Pinus patula in Kenya. Forest Ecosystems, 2014, 1, .	1.3	2
51	Integrating pine honeydew honey production into forest management optimization. European Journal of Forest Research, 2014, 133, 423-432.	1.1	40
52	Intra-specific differences in allometric equations for aboveground biomass of eastern Mediterranean Pinus brutia. Annals of Forest Science, 2014, 71, 101-112.	0.8	33
53	Stand structure and regeneration of harvested <i>Araucaria araucana–Nothofagus</i> stands in central Chile. Southern Forests, 2014, 76, 11-19.	0.2	2
54	Impact of forest management intensity on landscape-level mushroom productivity: A regional model-based scenario analysis. Forest Ecology and Management, 2014, 330, 218-227.	1.4	66

SERGIO DE-MIGUEL

#	Article	IF	CITATIONS
55	Developing generalized, calibratable, mixed-effects meta-models for large-scale biomass prediction. Canadian Journal of Forest Research, 2014, 44, 648-656.	0.8	23
56	Using optimization to solve tree misidentification and uneven measurement interval problems in individual-tree modeling of Balsa stand dynamics. Ecological Engineering, 2014, 69, 232-236.	1.6	6
57	Structure and spatio-temporal dynamics of cedar forests along a management gradient in the Middle Atlas, Morocco. Forest Ecology and Management, 2013, 289, 341-353.	1.4	32
58	A comparison of fixed- and mixed-effects modeling in tree growth and yield prediction of an indigenous neotropical species (Centrolobium tomentosum) in a plantation system. Forest Ecology and Management, 2013, 291, 249-258.	1.4	27
59	Evaluating marginal and conditional predictions of taper models in the absence of calibration data. Canadian Journal of Forest Research, 2012, 42, 1383-1394.	0.8	78
60	Immediate effect of thinning on the yield of Lactarius group deliciosus in Pinus pinaster forests in Northeastern Spain. Forest Ecology and Management, 2012, 265, 211-217.	1.4	86
61	Yield models for ectomycorrhizal mushrooms in Pinus sylvestris forests with special focus on Boletus edulis and Lactarius group deliciosus. Forest Ecology and Management, 2012, 282, 63-69.	1.4	63
62	Predicting the growth and yield of Pinus radiata in Bolivia. Annals of Forest Science, 2012, 69, 335-343.	0.8	14
63	Even-aged or uneven-aged modelling approach? A case for Pinus brutia. Annals of Forest Science, 2012, 69, 455-465.	0.8	15
64	A model for predicting the growth of Eucalyptus globulus seedling stands in Bolivia. Forest Systems, 2012, 21, 205.	0.1	9
65	A growth and yield model for even-aged Pinus brutia Ten. stands in Syria. Annals of Forest Science, 2011, 68, 149-157.	0.8	27
66	Models for simulating the development of even-aged Pinus brutia stands in Middle East. Forest Systems, 2010, 19, 449.	0.1	8
67	Nitrogen dynamics and soil nitrate retention in a Coffea arabica—Eucalyptus deglupta agroforestry system in Southern Costa Rica. Biogeochemistry, 2007, 85, 125-139.	1.7	54