Hannah J Joyce

List of Publications by Citations

Source: https://exaly.com/author-pdf/7055082/hannah-j-joyce-publications-by-citations.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

91 4,617 38 67 g-index

136 5,292 8.3 5.04 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
91	Phase perfection in zinc Blende and Wurtzite III-V nanowires using basic growth parameters. <i>Nano Letters</i> , 2010 , 10, 908-15	11.5	398
90	Twin-free uniform epitaxial GaAs nanowires grown by a two-temperature process. <i>Nano Letters</i> , 2007 , 7, 921-6	11.5	240
89	Carrier lifetime and mobility enhancement in nearly defect-free core-shell nanowires measured using time-resolved terahertz spectroscopy. <i>Nano Letters</i> , 2009 , 9, 3349-53	11.5	216
88	III I semiconductor nanowires for optoelectronic device applications. <i>Progress in Quantum Electronics</i> , 2011 , 35, 23-75	9.1	215
87	Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy. <i>Nanotechnology</i> , 2013 , 24, 214006	3.4	205
86	Influence of nanowire density on the shape and optical properties of ternary InGaAs nanowires. <i>Nano Letters</i> , 2006 , 6, 599-604	11.5	196
85	Polarization and temperature dependence of photoluminescence from zincblende and wurtzite InP nanowires. <i>Applied Physics Letters</i> , 2007 , 91, 263104	3.4	175
84	Ultrafast transient terahertz conductivity of monolayer MoSland WSellgrown by chemical vapor deposition. <i>ACS Nano</i> , 2014 , 8, 11147-53	16.7	161
83	Temperature dependence of photoluminescence from single core-shell GaAsAlGaAs nanowires. <i>Applied Physics Letters</i> , 2006 , 89, 173126	3.4	134
82	Ultralow surface recombination velocity in InP nanowires probed by terahertz spectroscopy. <i>Nano Letters</i> , 2012 , 12, 5325-30	11.5	127
81	Growth mechanism of truncated triangular III-V nanowires. Small, 2007, 3, 389-93	11	118
80	Unexpected benefits of rapid growth rate for III-V nanowires. <i>Nano Letters</i> , 2009 , 9, 695-701	11.5	114
79	A review of the electrical properties of semiconductor nanowires: insights gained from terahertz conductivity spectroscopy. <i>Semiconductor Science and Technology</i> , 2016 , 31, 103003	1.8	103
78	Super deformability and Young's modulus of GaAs nanowires. <i>Advanced Materials</i> , 2011 , 23, 1356-60	24	99
77	Extreme sensitivity of graphene photoconductivity to environmental gases. <i>Nature Communications</i> , 2012 , 3, 1228	17.4	94
76	Nearly intrinsic exciton lifetimes in single twin-free GaAsAlGaAs core-shell nanowire heterostructures. <i>Applied Physics Letters</i> , 2008 , 93, 053110	3.4	91
75	Removal of surface states and recovery of band-edge emission in InAs nanowires through surface passivation. <i>Nano Letters</i> , 2012 , 12, 3378-84	11.5	88

(2011-2008)

74	Nature of heterointerfaces in GaAs/InAs and InAs/GaAs axial nanowire heterostructures. <i>Applied Physics Letters</i> , 2008 , 93, 101911	3.4	86
73	Novel growth phenomena observed in axial InAs/GaAs nanowire heterostructures. <i>Small</i> , 2007 , 3, 1873	-711	86
72	High Purity GaAs Nanowires Free of Planar Defects: Growth and Characterization. <i>Advanced Functional Materials</i> , 2008 , 18, 3794-3800	15.6	83
71	Single nanowire photoconductive terahertz detectors. <i>Nano Letters</i> , 2015 , 15, 206-10	11.5	78
70	Phase separation induced by Au catalysts in ternary InGaAs nanowires. <i>Nano Letters</i> , 2013 , 13, 643-50	11.5	75
69	Modulation doping of GaAs/AlGaAs core-shell nanowires with effective defect passivation and high electron mobility. <i>Nano Letters</i> , 2015 , 15, 1336-42	11.5	69
68	Electron mobilities approaching bulk limits in "surface-free" GaAs nanowires. <i>Nano Letters</i> , 2014 , 14, 5989-94	11.5	64
67	Strong carrier lifetime enhancement in GaAs nanowires coated with semiconducting polymer. <i>Nano Letters</i> , 2012 , 12, 6293-301	11.5	52
66	Determination of band offsets at GaN/single-layer MoS2 heterojunction. <i>Applied Physics Letters</i> , 2016 , 109, 032104	3.4	52
65	An Ultrafast Switchable Terahertz Polarization Modulator Based on III-V Semiconductor Nanowires. <i>Nano Letters</i> , 2017 , 17, 2603-2610	11.5	51
64	Increased Photoconductivity Lifetime in GaAs Nanowires by Controlled n-Type and p-Type Doping. <i>ACS Nano</i> , 2016 , 10, 4219-27	16.7	51
63	Noncontact measurement of charge carrier lifetime and mobility in GaN nanowires. <i>Nano Letters</i> , 2012 , 12, 4600-4	11.5	51
62	Long-Range Charge Extraction in Back-Contact Perovskite Architectures via Suppressed Recombination. <i>Joule</i> , 2019 , 3, 1301-1313	27.8	50
61	Evolution of epitaxial InAs nanowires on GaAs 111B. Small, 2009, 5, 366-9	11	45
60	Self-healing of fractured GaAs nanowires. <i>Nano Letters</i> , 2011 , 11, 1546-9	11.5	44
59	Dynamics of strongly degenerate electron-hole plasmas and excitons in single InP nanowires. <i>Nano Letters</i> , 2007 , 7, 3383-7	11.5	44
58	Growth temperature and V/III ratio effects on the morphology and crystal structure of InP nanowires. <i>Journal Physics D: Applied Physics</i> , 2010 , 43, 445402	3	43
57	Growth of straight InAs-on-GaAs nanowire heterostructures. <i>Nano Letters</i> , 2011 , 11, 3899-905	11.5	40

56	Defect-Free GaAs/AlGaAs CoreBhell Nanowires on Si Substrates. <i>Crystal Growth and Design</i> , 2011 , 11, 3109-3114	3.5	40
55	Formation of hierarchical InAs nanoring/GaAs nanowire heterostructures. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 780-3	16.4	40
54	Understanding the true shape of Au-catalyzed GaAs nanowires. <i>Nano Letters</i> , 2014 , 14, 5865-72	11.5	39
53	Evolution of InAs branches in InAs G aAs nanowire heterostructures. <i>Applied Physics Letters</i> , 2007 , 91, 133115	3.4	37
52	Polarity driven formation of InAs/GaAs hierarchical nanowire heterostructures. <i>Applied Physics Letters</i> , 2008 , 93, 201908	3.4	36
51	Resonant excitation and imaging of nonequilibrium exciton spins in single core-shell GaAs-AlGaAs nanowires. <i>Nano Letters</i> , 2007 , 7, 588-95	11.5	35
50	Engineering the Photoresponse of InAs Nanowires. ACS Applied Materials & Engineering the Photoresponse of InAs Nanowires. ACS Applied Materials & Engineering the Photoresponse of InAs Nanowires.	993 <u>5</u> 44	0394
49	Tailoring GaAs, InAs, and InGaAs Nanowires for Optoelectronic Device Applications. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2011 , 17, 766-778	3.8	32
48	Novel growth and properties of GaAs nanowires on Si substrates. <i>Nanotechnology</i> , 2010 , 21, 035604	3.4	31
47	Fast Room-Temperature Detection of Terahertz Quantum Cascade Lasers with Graphene-Loaded Bow-Tie Plasmonic Antenna Arrays. <i>ACS Photonics</i> , 2016 , 3, 1747-1753	6.3	29
46	Evolution of Wurtzite Structured GaAs Shells Around InAs Nanowire Cores. <i>Nanoscale Research Letters</i> , 2009 , 4, 846-849	5	28
45	Dependence of Dye Regeneration and Charge Collection on the Pore-Filling Fraction in Solid-State Dye-Sensitized Solar Cells. <i>Advanced Functional Materials</i> , 2014 , 24, 668-677	15.6	27
44	An ultrafast carbon nanotube terahertz polarisation modulator. <i>Journal of Applied Physics</i> , 2014 , 115, 203108	2.5	25
43	Taper-Free and Vertically Oriented Ge Nanowires on Ge/Si Substrates Grown by a Two-Temperature Process. <i>Crystal Growth and Design</i> , 2012 , 12, 135-141	3.5	24
42	Tin(IV) dopant removal through anti-solvent engineering enabling tin based perovskite solar cells with high charge carrier mobilities. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 8389-8397	7.1	22
41	Electron-beam patterning of polymer electrolyte films to make multiple nanoscale gates for nanowire transistors. <i>Nano Letters</i> , 2014 , 14, 94-100	11.5	22
40	Direct observation of charge-carrier heating at WZ-ZB InP nanowire heterojunctions. <i>Nano Letters</i> , 2013 , 13, 4280-7	11.5	22
39	Hybrid Nanowire Ion-to-Electron Transducers for Integrated Bioelectronic Circuitry. <i>Nano Letters</i> , 2017 , 17, 827-833	11.5	21

38	Vertically standing Ge nanowires on GaAs(110) substrates. <i>Nanotechnology</i> , 2008 , 19, 125602	3.4	20
37	Optimizing the Energy Offset between Dye and Hole-Transporting Material in Solid-State Dye-Sensitized Solar Cells. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 19850-19858	3.8	18
36	The influence of surfaces on the transient terahertz conductivity and electron mobility of GaAs nanowires. <i>Journal Physics D: Applied Physics</i> , 2017 , 50, 224001	3	17
35	Integrated, Portable, Tunable, and Coherent Terahertz Sources and Sensitive Detectors Based on Layered Superconductors. <i>Proceedings of the IEEE</i> , 2020 , 108, 721-734	14.3	16
34	Ultrafast dynamics of exciton formation in semiconductor nanowires. <i>Small</i> , 2012 , 8, 1725-31	11	15
33	Crystallographically driven Au catalyst movement during growth of InAs/GaAs axial nanowire heterostructures. <i>Journal of Applied Physics</i> , 2009 , 105, 073503	2.5	14
32	Bifunctional Perovskite-BiVO4 Tandem Devices for Uninterrupted Solar and Electrocatalytic Water Splitting Cycles. <i>Advanced Functional Materials</i> , 2021 , 31, 2008182	15.6	14
31	CdS/CdSe lateral heterostructure nanobelts by a two-step physical vapor transport method. <i>Nanotechnology</i> , 2010 , 21, 145602	3.4	13
30	The influence of atmosphere on the performance of pure-phase WZ and ZB InAs nanowire transistors. <i>Nanotechnology</i> , 2017 , 28, 454001	3.4	12
29	Electronic comparison of InAs wurtzite and zincblende phases using nanowire transistors. <i>Physica Status Solidi - Rapid Research Letters</i> , 2013 , 7, 911-914	2.5	12
28	Taper-free and kinked germanium nanowires grown on silicon via purging and the two-temperature process. <i>Nanotechnology</i> , 2012 , 23, 115603	3.4	12
27	On-Chip Andreev Devices: Hard Superconducting Gap and Quantum Transport in Ballistic Nb-In Ga As-Quantum-Well-Nb Josephson Junctions. <i>Advanced Materials</i> , 2017 , 29, 1701836	24	11
26	Precursor flow rate manipulation for the controlled fabrication of twin-free GaAs nanowires on silicon substrates. <i>Nanotechnology</i> , 2012 , 23, 415702	3.4	10
25	Proximity induced superconductivity in indium gallium arsenide quantum wells. <i>Journal of Magnetism and Magnetic Materials</i> , 2018 , 459, 282-284	2.8	9
24	Vertically oriented epitaxial germanium nanowires on silicon substrates using thin germanium buffer layers. <i>Nanotechnology</i> , 2010 , 21, 295602	3.4	8
23	Nanowires for optoelectronic device applications. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2009 , 6, 2678-2682		4
22	Improving holographic search algorithms using sorted pixel selection. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision</i> , 2019 , 36, 1456-1462	1.8	4
21	Light management in ultra-thin solar cells: a guided optimisation approach. <i>Optics Express</i> , 2020 , 28, 39	90 <u>9.3</u> -39	91 ₃ 1

20	On-chip Hybrid Superconducting-Semiconducting Quantum Circuit. <i>IEEE Transactions on Applied Superconductivity</i> , 2018 , 28, 1-4	1.8	2
19	III-V compound semiconductor nanowires 2009 ,		2
18	III-V nanowires for optoelectronics 2006 ,		2
17	Growth, Structural and Optical Properties of GaAs, InGaAs and AlGaAs Nanowires and Nanowire Heterostructures. <i>Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS</i> , 2007 ,		2
16	High-Throughput Electrical Characterization of Nanomaterials from Room to Cryogenic Temperatures. <i>ACS Nano</i> , 2020 , 14, 15293-15305	16.7	2
15	Exploring the band structure of Wurtzite InAs nanowires using photocurrent spectroscopy. <i>Nano Research</i> , 2020 , 13, 1586-1591	10	2
14	Choice of Polymer Matrix for a Fast Switchable IIIIV Nanowire Terahertz Modulator. <i>MRS Advances</i> , 2017 , 2, 1475-1480	0.7	1
13	Single Nanowire Terahertz Detectors 2015 ,		1
12	Scalable Quantum Integrated Circuits on Superconducting Two-Dimensional Electron Gas Platform. Journal of Visualized Experiments, 2019 ,	1.6	1
11	Andreev reflections and magnetotransport in 2D Josephson junctions. <i>Journal of Physics:</i> Conference Series, 2019 , 1182, 012010	0.3	1
10	How InAs crystal phase affects the electrical performance of InAs nanowire FETs 2014,		1
9	III-V COMPOUND SEMICONDUCTOR NANOWIRES FOR OPTOELECTRONIC DEVICE APPLICATIONS. International Journal of High Speed Electronics and Systems, 2011 , 20, 131-141	0.5	1
8	Growth of III-V Nanowires and Nanowire Heterostructures by Metalorganic Chemical Vapor Deposition 2007 ,		1
7	Growth, Structural and Optical Properties of GaAs/AlGaAs Core/Shell Nanowires with and without Quantum Well Shells 2006 ,		1
6	Millimeter-Wave-to-Terahertz Superconducting Plasmonic Waveguides for Integrated Nanophotonics at Cryogenic Temperatures. <i>Materials</i> , 2021 , 14,	3.5	1
5	Terahertz Time-Domain Spectroscopy 2020 , 1, 1-4		O
4	Water-Assisted Growth: Bifunctional Perovskite-BiVO4 Tandem Devices for Uninterrupted Solar and Electrocatalytic Water Splitting Cycles (Adv. Funct. Mater. 15/2021). <i>Advanced Functional Materials</i> , 2021 , 31, 2170104	15.6	О
3	Properties of GaN nanowires with ScxGa1NN insertion. <i>Physica Status Solidi (B): Basic Research</i> , 2017 , 254, 1600740	1.3	

LIST OF PUBLICATIONS

- Failure and Formation of Axial Nanowire Heterostructures in Vapor-Liquid-Solid Growth. *Materials Research Society Symposia Proceedings*, **2007**, 1058, 1
- Facet-Related Non-uniform Photoluminescence in Passivated GaAs Nanowires. *Frontiers in Chemistry*, **2020**, 8, 607481

5