Eliana B. Souto

List of Publications by Citations

Source: https://exaly.com/author-pdf/7055044/eliana-b-souto-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 446
 15,939
 69
 110

 papers
 citations
 h-index
 g-index

 479
 19,256
 4.6
 7.08

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
446	Solid lipid nanoparticles as a drug delivery system for peptides and proteins. <i>Advanced Drug Delivery Reviews</i> , 2007 , 59, 478-90	18.5	599
445	Development of a controlled release formulation based on SLN and NLC for topical clotrimazole delivery. <i>International Journal of Pharmaceutics</i> , 2004 , 278, 71-7	6.5	503
444	Metal-Based Nanoparticles as Antimicrobial Agents: An Overview. <i>Nanomaterials</i> , 2020 , 10,	5.4	355
443	The Therapeutic Potential of Apigenin. International Journal of Molecular Sciences, 2019, 20,	6.3	305
442	Nanotoxicology applied to solid lipid nanoparticles and nanostructured lipid carriers - a systematic review of in vitro data. <i>European Journal of Pharmaceutics and Biopharmaceutics</i> , 2014 , 87, 1-18	5.7	268
441	Oral bioavailability of cyclosporine: solid lipid nanoparticles (SLN) versus drug nanocrystals. <i>International Journal of Pharmaceutics</i> , 2006 , 317, 82-9	6.5	261
440	Polyphenols: A concise overview on the chemistry, occurrence, and human health. <i>Phytotherapy Research</i> , 2019 , 33, 2221-2243	6.7	258
439	Cetyl palmitate-based NLC for topical delivery of Coenzyme Q(10) - development, physicochemical characterization and in vitro release studies. <i>European Journal of Pharmaceutics and Biopharmaceutics</i> , 2007 , 67, 141-8	5.7	228
438	Polymeric Nanoparticles: Production, Characterization, Toxicology and Ecotoxicology. <i>Molecules</i> , 2020 , 25,	4.8	219
437	Current State-of-Art and New Trends on Lipid Nanoparticles (SLN and NLC) for Oral Drug Delivery. Journal of Drug Delivery, 2012 , 2012, 750891	2.3	198
436	Lipid-based colloidal carriers for peptide and protein deliveryliposomes versus lipid nanoparticles. <i>International Journal of Nanomedicine</i> , 2007 , 2, 595-607	7.3	193
435	Lopinavir loaded solid lipid nanoparticles (SLN) for intestinal lymphatic targeting. <i>European Journal of Pharmaceutical Sciences</i> , 2011 , 42, 11-8	5.1	192
434	Preparation, characterization and biocompatibility studies on risperidone-loaded solid lipid nanoparticles (SLN): high pressure homogenization versus ultrasound. <i>Colloids and Surfaces B: Biointerfaces</i> , 2011 , 86, 158-65	6	188
433	Curcuminoids-loaded lipid nanoparticles: novel approach towards malaria treatment. <i>Colloids and Surfaces B: Biointerfaces</i> , 2010 , 81, 263-73	6	179
432	Cosmetic features and applications of lipid nanoparticles (SLN, NLC). <i>International Journal of Cosmetic Science</i> , 2008 , 30, 157-65	2.7	176
431	Cyclosporine-loaded solid lipid nanoparticles (SLN): drug-lipid physicochemical interactions and characterization of drug incorporation. <i>European Journal of Pharmaceutics and Biopharmaceutics</i> , 2008 , 68, 535-44	5.7	172
430	Nanomedicines for ocular NSAIDs: safety on drug delivery. <i>Nanomedicine: Nanotechnology, Biology, and Medicine</i> , 2009 , 5, 394-401	6	169

(2009-2014)

429	In vivo pharmacokinetics and biodistribution of resveratrol-loaded solid lipid nanoparticles for brain delivery. <i>International Journal of Pharmaceutics</i> , 2014 , 474, 6-13	6.5	166	
428	Development and evaluation of lipid nanocarriers for quercetin delivery: A comparative study of solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), and lipid nanoemulsions (LNE). LWT - Food Science and Technology, 2014 , 59, 115-121	5.4	166	
427	Preclinical safety of solid lipid nanoparticles and nanostructured lipid carriers: Current evidence from in vitro and in vivo evaluation. <i>European Journal of Pharmaceutics and Biopharmaceutics</i> , 2016 , 108, 235-252	5.7	163	
426	Evaluation of the physical stability of SLN and NLC before and after incorporation into hydrogel formulations. <i>European Journal of Pharmaceutics and Biopharmaceutics</i> , 2004 , 58, 83-90	5.7	163	
425	SLN and NLC for topical delivery of ketoconazole. <i>Journal of Microencapsulation</i> , 2005 , 22, 501-10	3.4	152	
424	Influence of oil content on physicochemical properties and skin distribution of Nile red-loaded NLC. <i>Journal of Controlled Release</i> , 2008 , 128, 134-41	11.7	148	
423	Oral insulin delivery by means of solid lipid nanoparticles. <i>International Journal of Nanomedicine</i> , 2007 , 2, 743-9	7.3	144	
422	Polymorphic behaviour of Compritol888 ATO as bulk lipid and as SLN and NLC. <i>Journal of Microencapsulation</i> , 2006 , 23, 417-33	3.4	139	
421	Lipid nanoparticles: effect on bioavailability and pharmacokinetic changes. <i>Handbook of Experimental Pharmacology</i> , 2010 , 115-41	3.2	133	
420	Design and ocular tolerance of flurbiprofen loaded ultrasound-engineered NLC. <i>Colloids and Surfaces B: Biointerfaces</i> , 2010 , 81, 412-21	6	130	
419	Optimization and physicochemical characterization of a triamcinolone acetonide-loaded NLC for ocular antiangiogenic applications. <i>International Journal of Pharmaceutics</i> , 2010 , 393, 167-75	6.5	129	
418	Lipid Nanoparticles (SLNI , NLCI) for Cutaneous Drug Delivery:Structure, Protection and Skin Effects. <i>Journal of Biomedical Nanotechnology</i> , 2007 , 3, 317-331	4	126	
417	Dual-drug loaded nanoparticles of Epigallocatechin-3-gallate (EGCG)/Ascorbic acid enhance therapeutic efficacy of EGCG in a APPswe/PS1dE9 Alzheimer's disease mice model. <i>Journal of Controlled Release</i> , 2019 , 301, 62-75	11.7	122	
416	Nanostructured lipid carriers for triamcinolone acetonide delivery to the posterior segment of the eye. <i>Colloids and Surfaces B: Biointerfaces</i> , 2011 , 88, 150-7	6	119	
415	Effect of polymer viscosity on physicochemical properties and ocular tolerance of FB-loaded PLGA nanospheres. <i>Colloids and Surfaces B: Biointerfaces</i> , 2009 , 72, 48-56	6	119	
414	Solid lipid nanoparticles as intracellular drug transporters: an investigation of the uptake mechanism and pathway. <i>International Journal of Pharmaceutics</i> , 2012 , 430, 216-27	6.5	117	
413	Beyond liposomes: Recent advances on lipid based nanostructures for poorly soluble/poorly permeable drug delivery. <i>Progress in Lipid Research</i> , 2017 , 68, 1-11	14.3	117	
412	Q10-loaded NLC versus nanoemulsions: stability, rheology and in vitro skin permeation. International Journal of Pharmaceutics, 2009 , 377, 207-14	6.5	115	

411	Development of ascorbyl palmitate nanocrystals applying the nanosuspension technology. <i>International Journal of Pharmaceutics</i> , 2008 , 354, 227-34	6.5	115
410	Insulin-loaded alginate microspheres for oral delivery Effect of polysaccharide reinforcement on physicochemical properties and release profile. <i>Carbohydrate Polymers</i> , 2007 , 69, 725-731	10.3	110
409	Optimizing flurbiprofen-loaded NLC by central composite factorial design for ocular delivery. <i>Nanotechnology</i> , 2011 , 22, 045101	3.4	107
408	Lipid nanoparticles (SLN, NLC): Overcoming the anatomical and physiological barriers of the eye - Part II - Ocular drug-loaded lipid nanoparticles. <i>European Journal of Pharmaceutics and Biopharmaceutics</i> , 2017 , 110, 58-69	5.7	106
407	SLN and NLC for topical, dermal, and transdermal drug delivery. <i>Expert Opinion on Drug Delivery</i> , 2020 , 17, 357-377	8	104
406	Design of cationic lipid nanoparticles for ocular delivery: development, characterization and cytotoxicity. <i>International Journal of Pharmaceutics</i> , 2014 , 461, 64-73	6.5	101
405	Tramadol hydrochloride: pharmacokinetics, pharmacodynamics, adverse side effects, co-administration of drugs and new drug delivery systems. <i>Biomedicine and Pharmacotherapy</i> , 2015 , 70, 234-8	7.5	101
404	Formulating fluticasone propionate in novel PEG-containing nanostructured lipid carriers (PEG-NLC). <i>Colloids and Surfaces B: Biointerfaces</i> , 2010 , 75, 538-42	6	100
403	Investigation of the factors influencing the incorporation of clotrimazole in SLN and NLC prepared by hot high-pressure homogenization. <i>Journal of Microencapsulation</i> , 2006 , 23, 377-88	3.4	98
402	Memantine loaded PLGA PEGylated nanoparticles for Alzheimer's disease: in vitro and in vivo characterization. <i>Journal of Nanobiotechnology</i> , 2018 , 16, 32	9.4	97
401	Nanostructured lipid carrier-based hydrogel formulations for drug delivery: a comprehensive review. <i>Expert Opinion on Drug Delivery</i> , 2009 , 6, 165-76	8	97
400	Feasibility of lipid nanoparticles for ocular delivery of anti-inflammatory drugs. <i>Current Eye Research</i> , 2010 , 35, 537-52	2.9	94
399	Brain delivery of camptothecin by means of solid lipid nanoparticles: formulation design, in vitro and in vivo studies. <i>International Journal of Pharmaceutics</i> , 2012 , 439, 49-62	6.5	89
398	Polymorphism, crystallinity and hydrophilic-lipophilic balance of stearic acid and stearic acid-caprylic triglyceride matrices for production of stable nanoparticles. <i>Colloids and Surfaces B: Biointerfaces</i> , 2011 , 86, 125-30	6	89
397	Nanoemulsions (NEs), liposomes (LPs) and solid lipid nanoparticles (SLNs) for retinyl palmitate: effect on skin permeation. <i>International Journal of Pharmaceutics</i> , 2014 , 473, 591-8	6.5	88
396	Surface modified PLGA nanoparticles for brain targeting of Bacoside-A. <i>European Journal of Pharmaceutical Sciences</i> , 2014 , 63, 29-35	5.1	87
395	Nanostructured lipid carriers as novel carrier for sunscreen formulations. <i>International Journal of Cosmetic Science</i> , 2007 , 29, 473-82	2.7	86
394	Biopharmaceutical evaluation of epigallocatechin gallate-loaded cationic lipid nanoparticles (EGCG-LNs): In vivo, in vitro and ex vivo studies. <i>International Journal of Pharmaceutics</i> , 2016 , 502, 161-9	6.5	86

(2019-2010)

393	Arthemeter-loaded lipid nanoparticles produced by modified thin-film hydration: Pharmacokinetics, toxicological and in vivo anti-malarial activity. <i>European Journal of Pharmaceutical Sciences</i> , 2010 , 40, 448-55	5.1	83
392	Nanoencapsulation of polyphenols for protective effect against colon-rectal cancer. <i>Biotechnology Advances</i> , 2013 , 31, 514-23	17.8	82
391	PEGylated PLGA nanospheres optimized by design of experiments for ocular administration of dexibuprofen-in vitro, ex vivo and in vivo characterization. <i>Colloids and Surfaces B: Biointerfaces</i> , 2016 , 145, 241-250	6	82
390	Surface engineering of silica nanoparticles for oral insulin delivery: characterization and cell toxicity studies. <i>Colloids and Surfaces B: Biointerfaces</i> , 2014 , 123, 916-23	6	80
389	Silver Nanoparticles-Composing Alginate/Gelatine Hydrogel Improves Wound Healing In Vivo. <i>Nanomaterials</i> , 2020 , 10,	5.4	79
388	Alginate Nanoparticles for Drug Delivery and Targeting. Current Pharmaceutical Design, 2019, 25, 1312-	1334	79
387	Preparation and characterization of PEG-coated silica nanoparticles for oral insulin delivery. <i>International Journal of Pharmaceutics</i> , 2014 , 473, 627-35	6.5	79
386	Occult dysplasia is disclosed by Lugol chromoendoscopy in alcoholics at high risk for squamous cell carcinoma of the esophagus. <i>Endoscopy</i> , 1999 , 31, 281-5	3.4	76
385	Advances in nanomedicines for malaria treatment. <i>Advances in Colloid and Interface Science</i> , 2013 , 201-202, 1-17	14.3	75
384	Biopharmaceutical profile of pranoprofen-loaded PLGA nanoparticles containing hydrogels for ocular administration. <i>European Journal of Pharmaceutics and Biopharmaceutics</i> , 2015 , 95, 261-70	5.7	75
383	Physicochemical characterization of epigallocatechin gallate lipid nanoparticles (EGCG-LNs) for ocular instillation. <i>Colloids and Surfaces B: Biointerfaces</i> , 2014 , 123, 452-60	6	74
382	Linalool bioactive properties and potential applicability in drug delivery systems. <i>Colloids and Surfaces B: Biointerfaces</i> , 2018 , 171, 566-578	6	73
381	Cross-linked chitosan microspheres for oral delivery of insulin: Taguchi design and in vivo testing. <i>Colloids and Surfaces B: Biointerfaces</i> , 2012 , 92, 175-9	6	73
380	Current Applications of Nanoemulsions in Cancer Therapeutics. <i>Nanomaterials</i> , 2019 , 9,	5.4	72
379	Effect of mucoadhesive polymers on the in vitro performance of insulin-loaded silica nanoparticles: Interactions with mucin and biomembrane models. <i>European Journal of Pharmaceutics and Biopharmaceutics</i> , 2015 , 93, 118-26	5.7	71
378	Lipid nanoparticles (SLN, NLC): Overcoming the anatomical and physiological barriers of the eye - Part I - Barriers and determining factors in ocular delivery. <i>European Journal of Pharmaceutics and Biopharmaceutics</i> , 2017 , 110, 70-75	5.7	71
377	Predictive modeling of insulin release profile from cross-linked chitosan microspheres. <i>European Journal of Medicinal Chemistry</i> , 2013 , 60, 249-53	6.8	69
376	Advanced Formulation Approaches for Ocular Drug Delivery: State-Of-The-Art and Recent Patents. <i>Pharmaceutics</i> , 2019 , 11,	6.4	68

375	Preparation and characterization of n-dodecyl-ferulate-loaded solid lipid nanoparticles (SLN). <i>International Journal of Pharmaceutics</i> , 2005 , 295, 261-8	6.5	68
374	Lipid nanocarriers for the loading of polyphenols - A comprehensive review. <i>Advances in Colloid and Interface Science</i> , 2018 , 260, 85-94	14.3	64
373	Optimizing SLN and NLC by 2(2) full factorial design: effect of homogenization technique. <i>Materials Science and Engineering C</i> , 2012 , 32, 1375-9	8.3	64
372	Sodium alginate-cross-linked polymyxin B sulphate-loaded solid lipid nanoparticles: Antibiotic resistance tests and HaCat and NIH/3T3 cell viability studies. <i>Colloids and Surfaces B: Biointerfaces</i> , 2015 , 129, 191-7	6	63
371	Anti-inflammatory and anti-cancer activity of citral: Optimization of citral-loaded solid lipid nanoparticles (SLN) using experimental factorial design and LUMiSizer (I. International Journal of Pharmaceutics, 2018, 553, 428-440	6.5	63
370	Design and characterization of chitosan/zeolite composite filmsEffect of zeolite type and zeolite dose on the film properties. <i>Materials Science and Engineering C</i> , 2016 , 60, 246-254	8.3	62
369	Chapter 6 - Solid lipid nanoparticle formulations pharmacokinetic and biopharmaceutical aspects in drug delivery. <i>Methods in Enzymology</i> , 2009 , 464, 105-29	1.7	62
368	Release profile and transscleral permeation of triamcinolone acetonide loaded nanostructured lipid carriers (TA-NLC): in vitro and ex vivo studies. <i>Nanomedicine: Nanotechnology, Biology, and Medicine</i> , 2012 , 8, 1034-41	6	61
367	Nanoparticle Delivery Systems in the Treatment of Diabetes Complications. <i>Molecules</i> , 2019 , 24,	4.8	60
366	Solid lipid nanoparticles for hydrophilic biotech drugs: optimization and cell viability studies (Caco-2 & HEPG-2 cell lines). <i>European Journal of Medicinal Chemistry</i> , 2014 , 81, 28-34	6.8	58
365	Advances in brain drug targeting and delivery: limitations and challenges of solid lipid nanoparticles. <i>Expert Opinion on Drug Delivery</i> , 2013 , 10, 889-905	8	58
364	Memantine-Loaded PEGylated Biodegradable Nanoparticles for the Treatment of Glaucoma. <i>Small</i> , 2018 , 14, 1701808	11	58
363	Cationic solid lipid nanoparticles interfere with the activity of antioxidant enzymes in hepatocellular carcinoma cells. <i>International Journal of Pharmaceutics</i> , 2014 , 471, 18-27	6.5	57
362	Cationic solid lipid nanoparticles (cSLN): structure, stability and DNA binding capacity correlation studies. <i>International Journal of Pharmaceutics</i> , 2011 , 420, 341-9	6.5	57
361	Current nanotechnology approaches for the treatment and management of diabetic retinopathy. <i>European Journal of Pharmaceutics and Biopharmaceutics</i> , 2015 , 95, 307-22	5.7	56
360	Improved and safe transcorneal delivery of flurbiprofen by NLC and NLC-based hydrogels. <i>Journal of Pharmaceutical Sciences</i> , 2012 , 101, 707-25	3.9	56
359	Nanoemulsions for dermal controlled release of oleanolic and ursolic acids: In vitro, ex vivo and in vivo characterization. <i>Colloids and Surfaces B: Biointerfaces</i> , 2015 , 130, 40-7	6	55
358	Grape Seeds: Chromatographic Profile of Fatty Acids and Phenolic Compounds and Qualitative Analysis by FTIR-ATR Spectroscopy. <i>Foods</i> , 2019 , 9,	4.9	55

(2020-2005)

357	A novel approach based on lipid nanoparticles (SLN) for topical delivery of alpha-lipoic acid. <i>Journal of Microencapsulation</i> , 2005 , 22, 581-92	3.4	54	
356	Nanotoxicology and Nanosafety: Safety-By-Design and Testing at a Glance. <i>International Journal of Environmental Research and Public Health</i> , 2020 , 17,	4.6	53	
355	In vitro evaluation of permeation, toxicity and effect of praziquantel-loaded solid lipid nanoparticles against Schistosoma mansoni as a strategy to improve efficacy of the schistosomiasis treatment. <i>International Journal of Pharmaceutics</i> , 2014 , 463, 31-7	6.5	53	
354	Potential use of nanostructured lipid carriers for topical delivery of flurbiprofen. <i>Journal of Pharmaceutical Sciences</i> , 2011 , 100, 242-51	3.9	53	
353	Abelmoschus esculentus (L.): Bioactive Components' Beneficial Properties-Focused on Antidiabetic Role-For Sustainable Health Applications. <i>Molecules</i> , 2018 , 24,	4.8	52	
352	Mediterranean essential oils as precious matrix components and active ingredients of lipid nanoparticles. <i>International Journal of Pharmaceutics</i> , 2018 , 548, 217-226	6.5	52	
351	Sugar-Lowering Drugs for Type 2 Diabetes Mellitus and Metabolic Syndrome-Review of Classical and New Compounds: Part-I. <i>Pharmaceuticals</i> , 2019 , 12,	5.2	49	
350	Nanomedicines for the Delivery of Antimicrobial Peptides (AMPs). <i>Nanomaterials</i> , 2020 , 10,	5.4	49	
349	Colon specific chitosan microspheres for chronotherapy of chronic stable angina. <i>Colloids and Surfaces B: Biointerfaces</i> , 2011 , 83, 277-83	6	48	
348	The use of SLN and NLC as topical particulate carriers for imidazole antifungal agents. <i>Die Pharmazie</i> , 2006 , 61, 431-7	1.5	48	
347	Modified Rose Bengal assay for surface hydrophobicity evaluation of cationic solid lipid nanoparticles (cSLN). <i>European Journal of Pharmaceutical Sciences</i> , 2012 , 45, 606-12	5.1	47	
346	Physicochemical characterization and in vitro release studies of ascorbyl palmitate-loaded semi-solid nanostructured lipid carriers (NLC gels). <i>Journal of Microencapsulation</i> , 2008 , 25, 111-20	3.4	47	
345	(+)-Limonene 1,2-Epoxide-Loaded SLNs: Evaluation of Drug Release, Antioxidant Activity, and Cytotoxicity in an HaCaT Cell Line. <i>International Journal of Molecular Sciences</i> , 2020 , 21,	6.3	46	
344	Optimization of linalool-loaded solid lipid nanoparticles using experimental factorial design and long-term stability studies with a new centrifugal sedimentation method. <i>International Journal of Pharmaceutics</i> , 2018 , 549, 261-270	6.5	46	
343	Cationic Surfactants: Self-Assembly, Structure-Activity Correlation and Their Biological Applications. <i>International Journal of Molecular Sciences</i> , 2019 , 20,	6.3	46	
342	Solid lipid nanoparticles (SLN)effects of lipid composition on in vitro degradation and in vivo toxicity. <i>Die Pharmazie</i> , 2006 , 61, 539-44	1.5	46	
341	Ocular Drug Delivery - New Strategies for Targeting Anterior and Posterior Segments of the Eye. <i>Current Pharmaceutical Design</i> , 2016 , 22, 1135-46	3.3	45	
340	New Nanotechnologies for the Treatment and Repair of Skin Burns Infections. <i>International Journal of Molecular Sciences</i> , 2020 , 21,	6.3	44	

339	Comet assay reveals no genotoxicity risk of cationic solid lipid nanoparticles. <i>Journal of Applied Toxicology</i> , 2014 , 34, 395-403	4.1	44
338	Experimental factorial design applied to mucoadhesive lipid nanoparticles via multiple emulsion process. <i>Colloids and Surfaces B: Biointerfaces</i> , 2012 , 100, 84-9	6	44
337	In vitro, ex vivo and in vivo characterization of PLGA nanoparticles loading pranoprofen for ocular administration. <i>International Journal of Pharmaceutics</i> , 2016 , 511, 719-27	6.5	44
336	Clotrimazole-Loaded Mediterranean Essential Oils NLC: A Synergic Treatment of Skin Infections. <i>Pharmaceutics</i> , 2019 , 11,	6.4	43
335	Antimicrobial activity of polymyxin-loaded solid lipid nanoparticles (PLX-SLN): Characterization of physicochemical properties and in vitro efficacy. <i>European Journal of Pharmaceutical Sciences</i> , 2017 , 106, 177-184	5.1	42
334	d-£ocopherol nanoemulsions: Size properties, rheological behavior, surface tension, osmolarity and cytotoxicity. <i>Saudi Pharmaceutical Journal</i> , 2017 , 25, 231-235	4.4	42
333	Multivariate design for the evaluation of lipid and surfactant composition effect for optimisation of lipid nanoparticles. <i>European Journal of Pharmaceutical Sciences</i> , 2012 , 45, 613-23	5.1	41
332	A novel lipid nanocarrier for insulin delivery: production, characterization and toxicity testing. <i>Pharmaceutical Development and Technology</i> , 2013 , 18, 545-9	3.4	41
331	Nanopharmaceutics: Part I-Clinical Trials Legislation and Good Manufacturing Practices (GMP) of Nanotherapeutics in the EU. <i>Pharmaceutics</i> , 2020 , 12,	6.4	40
330	Physicochemical investigations on the structure of drug-free and drug-loaded solid lipid nanoparticles (SLN) by means of DSC and 1H NMR. <i>Die Pharmazie</i> , 2005 , 60, 508-13	1.5	40
329	Nanomaterials for Skin Delivery of Cosmeceuticals and Pharmaceuticals. <i>Applied Sciences</i> (Switzerland), 2020 , 10, 1594	2.6	39
328	Mixed cationic liposomes for brain delivery of drugs by the intranasal route: The acetylcholinesterase reactivator 2-PAM as encapsulated drug model. <i>Colloids and Surfaces B: Biointerfaces</i> , 2018 , 171, 358-367	6	39
327	Nanoemulsions for delivery of flavonoids: formulation and in vitro release of rutin as model drug. <i>Pharmaceutical Development and Technology</i> , 2014 , 19, 677-80	3.4	39
326	Improving oral absorption of Salmon calcitonin by trimyristin lipid nanoparticles. <i>Journal of Biomedical Nanotechnology</i> , 2009 , 5, 76-83	4	39
325	Nanopharmaceutics: Part II-Production Scales and Clinically Compliant Production Methods. <i>Nanomaterials</i> , 2020 , 10,	5.4	38
324	Thermo-sensitive gels containing lorazepam microspheres for intranasal brain targeting. International Journal of Pharmaceutics, 2013, 441, 516-26	6.5	38
323	Sucupira Oil-Loaded Nanostructured Lipid Carriers (NLC): Lipid Screening, Factorial Design, Release Profile, and Cytotoxicity. <i>Molecules</i> , 2020 , 25,	4.8	37
322	Solid lipid nanoparticles optimized by 2 factorial design for skin administration: Cytotoxicity in NIH3T3 fibroblasts. <i>Colloids and Surfaces B: Biointerfaces</i> , 2018 , 171, 501-505	6	37

321	In Vitro Cytotoxicity of Oleanolic/Ursolic Acids-Loaded in PLGA Nanoparticles in Different Cell Lines. <i>Pharmaceutics</i> , 2019 , 11,	6.4	37	
320	Development and Optimization of Alpha-Pinene-Loaded Solid Lipid Nanoparticles (SLN) Using Experimental Factorial Design and Dispersion Analysis. <i>Molecules</i> , 2019 , 24,	4.8	36	
319	Loading of praziquantel in the crystal lattice of solid lipid nanoparticles. <i>Journal of Thermal Analysis and Calorimetry</i> , 2012 , 108, 353-360	4.1	36	
318	Development and characterization of a cationic lipid nanocarrier as non-viral vector for gene therapy. <i>European Journal of Pharmaceutical Sciences</i> , 2015 , 66, 78-82	5.1	35	
317	Current advances in the development of novel polymeric nanoparticles for the treatment of neurodegenerative diseases. <i>Nanomedicine</i> , 2020 , 15, 1239-1261	5.6	35	
316	Nanoparticle-Delivered 2-PAM for Rat Brain Protection against Paraoxon Central Toxicity. <i>ACS Applied Materials & Applied & Ap</i>	9.5	34	
315	Validation of a high performance liquid chromatography method for the stabilization of epigallocatechin gallate. <i>International Journal of Pharmaceutics</i> , 2014 , 475, 181-90	6.5	34	
314	Self-assembling systems based on quaternized derivatives of 1,4-diazabicyclo[2.2.2]octane in nutrient broth as antimicrobial agents and carriers for hydrophobic drugs. <i>Colloids and Surfaces B: Biointerfaces</i> , 2015 , 127, 266-73	6	34	
313	Encapsulation of antioxidants in gastrointestinal-resistant nanoparticulate carriers. <i>Methods in Molecular Biology</i> , 2013 , 1028, 37-46	1.4	33	
312	Lipid-based colloidal systems (nanoparticles, microemulsions) for drug delivery to the skin: materials and end-product formulations. <i>Journal of Drug Delivery Science and Technology</i> , 2011 , 21, 43-	-54 ⁻⁵	33	
311	Dual-drugs delivery in solid lipid nanoparticles for the treatment of Candida albicans mycosis. <i>Colloids and Surfaces B: Biointerfaces</i> , 2020 , 186, 110705	6	33	
310	Transferrin-Conjugated Docetaxel-PLGA Nanoparticles for Tumor Targeting: Influence on MCF-7 Cell Cycle. <i>Polymers</i> , 2019 , 11,	4.5	33	
309	An Updated Overview on Nanonutraceuticals: Focus on Nanoprebiotics and Nanoprobiotics. <i>International Journal of Molecular Sciences</i> , 2020 , 21,	6.3	32	
308	Characteristics, Occurrence, Detection and Detoxification of Aflatoxins in Foods and Feeds. <i>Foods</i> , 2020 , 9,	4.9	32	
307	Minoxidil-loaded nanostructured lipid carriers (NLC): characterization and rheological behaviour of topical formulations. <i>Die Pharmazie</i> , 2009 , 64, 177-82	1.5	32	
306	Soft Cationic Nanoparticles for Drug Delivery: Production and Cytotoxicity of Solid Lipid Nanoparticles (SLNs). <i>Applied Sciences (Switzerland)</i> , 2019 , 9, 4438	2.6	31	
305	Hydrophilic coating of mitotane-loaded lipid nanoparticles: preliminary studies for mucosal adhesion. <i>Pharmaceutical Development and Technology</i> , 2013 , 18, 577-81	3.4	31	
304	Biopharmaceutical profile of a clotrimazole nanoemulsion: Evaluation on skin and mucosae as anticandidal agent. <i>International Journal of Pharmaceutics</i> , 2019 , 554, 105-115	6.5	31	

303	Perillaldehyde 1,2-epoxide Loaded SLN-Tailored mAb: Production, Physicochemical Characterization and In Vitro Cytotoxicity Profile in MCF-7 Cell Lines. <i>Pharmaceutics</i> , 2020 , 12,	6.4	30
302	Properties, Extraction Methods, and Delivery Systems for Curcumin as a Natural Source of Beneficial Health Effects. <i>Medicina (Lithuania)</i> , 2020 , 56,	3.1	30
301	Linseed Essential Oil - Source of Lipids as Active Ingredients for Pharmaceuticals and Nutraceuticals. <i>Current Medicinal Chemistry</i> , 2019 , 26, 4537-4558	4.3	30
300	Evaluation of the Influence of Process Parameters on the Properties of Resveratrol-Loaded NLC Using 2 Full Factorial Design. <i>Antioxidants</i> , 2019 , 8,	7.1	29
299	Big impact of nanoparticles: analysis of the most cited nanopharmaceuticals and nanonutraceuticals research. <i>Current Research in Biotechnology</i> , 2020 , 2, 53-63	4.8	29
298	Hansen solubility parameters (HSP) for prescreening formulation of solid lipid nanoparticles (SLN): in vitro testing of curcumin-loaded SLN in MCF-7 and BT-474 cell lines. <i>Pharmaceutical Development and Technology</i> , 2018 , 23, 96-105	3.4	29
297	Nanoemulsions and nanoparticles for non-melanoma skin cancer: effects of lipid materials. <i>Clinical and Translational Oncology</i> , 2013 , 15, 417-24	3.6	29
296	Surface-tailored anti-HER2/neu-solid lipid nanoparticles for site-specific targeting MCF-7 and BT-474 breast cancer cells. <i>European Journal of Pharmaceutical Sciences</i> , 2019 , 128, 27-35	5.1	29
295	Sugar-Lowering Drugs for Type 2 Diabetes Mellitus and Metabolic Syndrome-Strategies for In Vivo Administration: Part-II. <i>Journal of Clinical Medicine</i> , 2019 , 8,	5.1	28
294	Development of Chitosan/Silver Sulfadiazine/Zeolite Composite Films for Wound Dressing. <i>Pharmaceutics</i> , 2019 , 11,	6.4	28
293	Comparison of antiproliferative effect of epigallocatechin gallate when loaded into cationic solid lipid nanoparticles against different cell lines. <i>Pharmaceutical Development and Technology</i> , 2019 , 24, 1243-1249	3.4	27
292	Polyphenols-enriched Hibiscus sabdariffa extract-loaded nanostructured lipid carriers (NLC): Optimization by multi-response surface methodology. <i>Journal of Drug Delivery Science and Technology</i> , 2019 , 49, 660-667	4.5	27
291	Rosemary (L., syn Spenn.) and Its Topical Applications: A Review. <i>Plants</i> , 2020 , 9,	4.5	27
290	Ibuprofen nanocrystals developed by 2 factorial design experiment: A new approach for poorly water-soluble drugs. <i>Saudi Pharmaceutical Journal</i> , 2017 , 25, 1117-1124	4.4	27
289	Modified-release topical hydrogels: a ten-year review. <i>Journal of Materials Science</i> , 2019 , 54, 10963-10	98 3	26
288	Loading, release profile and accelerated stability assessment of monoterpenes-loaded solid lipid nanoparticles (SLN). <i>Pharmaceutical Development and Technology</i> , 2020 , 25, 832-844	3.4	26
287	Biopharmaceutical profile of hydrogels containing pranoprofen-loaded PLGA nanoparticles for skin administration: In vitro, ex vivo and in vivo characterization. <i>International Journal of Pharmaceutics</i> , 2016 , 501, 350-61	6.5	26
286	Key production parameters for the development of solid lipid nanoparticles by high shear homogenization. <i>Pharmaceutical Development and Technology</i> , 2019 , 24, 1181-1185	3.4	26

(2017-2019)

285	Praziquantel-Solid Lipid Nanoparticles Produced by Supercritical Carbon Dioxide Extraction: Physicochemical Characterization, Release Profile, and Cytotoxicity. <i>Molecules</i> , 2019 , 24,	4.8	26
284	Trends in Atopic Dermatitis-From Standard Pharmacotherapy to Novel Drug Delivery Systems. <i>International Journal of Molecular Sciences</i> , 2019 , 20,	6.3	26
283	Trehalose is not a universal solution for solid lipid nanoparticles freeze-drying. <i>Pharmaceutical Development and Technology</i> , 2014 , 19, 922-9	3.4	26
282	Chitosan/Copaiba oleoresin films for would dressing application. <i>International Journal of Pharmaceutics</i> , 2019 , 555, 146-152	6.5	26
281	Ready to Use Therapeutical Beverages: Focus on Functional Beverages Containing Probiotics, Prebiotics and Synbiotics. <i>Beverages</i> , 2020 , 6, 26	3.4	26
280	Essential Oils: Pharmaceutical Applications and Encapsulation Strategies into Lipid-Based Delivery Systems. <i>Pharmaceutics</i> , 2021 , 13,	6.4	24
279	In vitro SPF and Photostability Assays of Emulsion Containing Nanoparticles with Vegetable Extracts Rich in Flavonoids. <i>AAPS PharmSciTech</i> , 2018 , 20, 9	3.9	24
278	Flavonoid-Enriched Plant-Extract-Loaded Emulsion: A Novel Phytocosmetic Sunscreen Formulation with Antioxidant Properties. <i>Antioxidants</i> , 2019 , 8,	7.1	23
277	Characterization and shelf life of Etarotene loaded solid lipid microparticles produced with stearic acid and sunflower oil. <i>Brazilian Archives of Biology and Technology</i> , 2013 , 56, 663-671	1.8	23
276	Physicochemical properties of lipid nanoparticles: effect of lipid and surfactant composition. <i>Drug Development and Industrial Pharmacy</i> , 2011 , 37, 815-24	3.6	23
275	Hydrophilic Polymers for Modified-Release Nanoparticles: A Review of Mathematical Modelling for Pharmacokinetic Analysis. <i>Current Pharmaceutical Design</i> , 2015 , 21, 3090-6	3.3	23
274	3D printing in the design of pharmaceutical dosage forms. <i>Pharmaceutical Development and Technology</i> , 2019 , 24, 1044-1053	3.4	22
273	Dexibuprofen Biodegradable Nanoparticles: One Step Closer towards a Better Ocular Interaction Study. <i>Nanomaterials</i> , 2020 , 10,	5.4	22
272	Essential oils as active ingredients of lipid nanocarriers for chemotherapeutic use. <i>Current Pharmaceutical Biotechnology</i> , 2015 , 16, 365-70	2.6	22
271	Combination delivery of two oxime-loaded lipid nanoparticles: Time-dependent additive action for prolonged rat brain protection. <i>Journal of Controlled Release</i> , 2018 , 290, 102-111	11.7	22
270	Comparative study between the viscoelastic behaviors of different lipid nanoparticle formulations. <i>Journal of Cosmetic Science</i> , 2004 , 55, 463-71	0.7	22
269	Repurposing itraconazole to the benefit of skin cancer treatment: A combined azole-DDAB nanoencapsulation strategy. <i>Colloids and Surfaces B: Biointerfaces</i> , 2018 , 167, 337-344	6	21
268	Compatibility study of paracetamol, chlorpheniramine maleate and phenylephrine hydrochloride in physical mixtures. <i>Saudi Pharmaceutical Journal</i> , 2017 , 25, 99-103	4.4	20

267	Uveal melanoma: physiopathology and new in situ-specific therapies. <i>Cancer Chemotherapy and Pharmacology</i> , 2019 , 84, 15-32	3.5	20
266	Chitosan Cross-Linked Pentasodium Tripolyphosphate Micro/Nanoparticles Produced by Ionotropic Gelation. <i>Sugar Tech</i> , 2016 , 18, 49-54	1.9	20
265	Crystallinity of Dynasan 114 and Dynasan 118 matrices for the production of stable Miglyol -loaded nanoparticles. <i>Journal of Thermal Analysis and Calorimetry</i> , 2012 , 108, 101-108	4.1	20
264	Prevention and current onset delay approaches of type 2 diabetes mellitus (T2DM). <i>European Journal of Clinical Pharmacology</i> , 2011 , 67, 653-61	2.8	20
263	Nanopesticides in Agriculture: Benefits and Challenge in Agricultural Productivity, Toxicological Risks to Human Health and Environment. <i>Toxics</i> , 2021 , 9,	4.7	20
262	Optimization of nimesulide-loaded solid lipid nanoparticles (SLN) by factorial design, release profile and cytotoxicity in human Colon adenocarcinoma cell line. <i>Pharmaceutical Development and Technology</i> , 2019 , 24, 616-622	3.4	20
261	Rheological and in vitro release behaviour of clotrimazole-containing aqueous SLN dispersions and commercial creams. <i>Die Pharmazie</i> , 2007 , 62, 505-9	1.5	20
260	Lipid nanoemulsions for anti-cancer drug therapy. <i>Die Pharmazie</i> , 2011 , 66, 473-8	1.5	20
259	Synthesis, spectroscopic characterization and biological evaluation of unsymmetrical aminosquarylium cyanine dyes. <i>Bioorganic and Medicinal Chemistry</i> , 2017 , 25, 3803-3814	3.4	19
258	Elastic liposomes containing benzophenone-3 for sun protection factor enhancement. <i>Pharmaceutical Development and Technology</i> , 2012 , 17, 661-5	3.4	19
257	Preparation of gastro-resistant pellets containing chitosan microspheres for improvement of oral didanosine bioavailability. <i>Journal of Pharmaceutical Analysis</i> , 2012 , 2, 188-192	14	19
256	Preparaß de nanopartßulas polimficas a partir da polimerizaß de monsheros: parte I. <i>Polimeros</i> , 2012 , 22, 96-100	1.6	19
255	A note on regulatory concerns and toxicity assessment in lipid-based delivery systems (LDS). Journal of Biomedical Nanotechnology, 2009 , 5, 317-22	4	19
254	Applications of Natural, Semi-Synthetic, and Synthetic Polymers in Cosmetic Formulations. <i>Cosmetics</i> , 2020 , 7, 75	2.7	19
253	Nanoparticulate carriers (NPC) for oral pharmaceutics and nutraceutics. <i>Die Pharmazie</i> , 2010 , 65, 75-82	1.5	19
252	subsp. an Endemic Portuguese Plant: Phytochemical Profiling, Antioxidant, Anti-Proliferative and Anti-Inflammatory Activities. <i>Antioxidants</i> , 2020 , 9,	7.1	18
251	Therapeutic nanosystems for oncology nanomedicine. Clinical and Translational Oncology, 2012, 14, 883	- <u>9</u> .6	18
250	State-of-the-art polymeric nanoparticles as promising therapeutic tools against human bacterial infections. <i>Journal of Nanobiotechnology</i> , 2020 , 18, 156	9.4	17

249	Hawthorn (Crataegus spp.): An Updated Overview on Its Beneficial Properties. <i>Forests</i> , 2020 , 11, 564	2.8	17
248	Naringenin-Functionalized Multi-Walled Carbon Nanotubes: A Potential Approach for Site-Specific Remote-Controlled Anticancer Delivery for the Treatment of Lung Cancer Cells. <i>International Journal of Molecular Sciences</i> , 2020 , 21,	6.3	17
247	Bromelain-loaded nanoparticles: A comprehensive review of the state of the art. <i>Advances in Colloid and Interface Science</i> , 2018 , 254, 48-55	14.3	17
246	Targeting dendritic cells for the treatment of autoimmune disorders. <i>Colloids and Surfaces B: Biointerfaces</i> , 2017 , 158, 237-248	6	17
245	The intestinal permeation of didanosine from granules containing microspheres using the everted gut sac model. <i>Journal of Microencapsulation</i> , 2009 , 26, 523-8	3.4	17
244	Microemulsion and Microemulsion-Based Gels for Topical Antifungal Therapy with Phytochemicals. <i>Current Pharmaceutical Design</i> , 2016 , 22, 4257-63	3.3	17
243	Synthesis, structure-activity relationship and biological evaluation of tetracationic gemini Dabco-surfactants for transdermal liposomal formulations. <i>International Journal of Pharmaceutics</i> , 2020 , 575, 118953	6.5	17
242	Brazilian Red Propolis: Extracts Production, Physicochemical Characterization, and Cytotoxicity Profile for Antitumor Activity. <i>Biomolecules</i> , 2020 , 10,	5.9	16
241	Preparaß de nanopart¤ulas polimficas a partir de polineros prformados: parte II. <i>Polimeros</i> , 2012 , 22, 101-106	1.6	16
240	Risperidone Release from Solid Lipid Nanoparticles (SLN): Validated HPLC Method and Modelling Kinetic Profile. <i>Current Pharmaceutical Analysis</i> , 2012 , 8, 307-316	0.6	16
239	The Influence of Polysaccharide Coating on the Physicochemical Parameters and Cytotoxicity of Silica Nanoparticles for Hydrophilic Biomolecules Delivery. <i>Nanomaterials</i> , 2019 , 9,	5.4	15
238	Sirtuins and SIRT6 in Carcinogenesis and in Diet. <i>International Journal of Molecular Sciences</i> , 2019 , 20,	6.3	15
237	Nanoparticulate strategies for effective delivery of poorly soluble therapeutics. <i>Therapeutic Delivery</i> , 2010 , 1, 149-67	3.8	15
236	Analytical tools and evaluation strategies for nanostructured lipid carrier-based topical delivery systems. <i>Expert Opinion on Drug Delivery</i> , 2020 , 17, 963-992	8	15
235	Evaluation of In Vitro Solar Protection Factor (SPF), Antioxidant Activity, and Cell Viability of Mixed Vegetable Extracts from Benth, L., L., and L. <i>Plants</i> , 2019 , 8,	4.5	15
234	Quantification of Trans-Resveratrol-Loaded Solid Lipid Nanoparticles by a Validated Reverse-Phase HPLC Photodiode Array. <i>Applied Sciences (Switzerland)</i> , 2019 , 9, 4961	2.6	15
233	Clotrimazole multiple W/O/W emulsion as anticandidal agent: Characterization and evaluation on skin and mucosae. <i>Colloids and Surfaces B: Biointerfaces</i> , 2019 , 175, 166-174	6	15
232	Therapeutic Interventions for Countering Leishmaniasis and Chagas's Disease: From Traditional Sources to Nanotechnological Systems. <i>Pathogens</i> , 2019 , 8,	4.5	14

231	Formulating octyl methoxycinnamate in hybrid lipid-silica nanoparticles: An innovative approach for UV skin protection. <i>Heliyon</i> , 2020 , 6, e03831	3.6	14
230	Solid lipid nanoparticles (SLN) 2020 , 1-15		14
229	Desenvolvimento e caracteriza ® de filmes comp®itos de quitosana e zelltas com prata. <i>Polimeros</i> , 2015 , 25, 492-502	1.6	14
228	Red Propolis and Its Dyslipidemic Regulator Formononetin: Evaluation of Antioxidant Activity and Gastroprotective Effects in Rat Model of Gastric Ulcer. <i>Nutrients</i> , 2020 , 12,	6.7	14
227	Delivery of Antimicrobials by Chitosan-Composed Therapeutic Nanostructures 2017 , 203-222		13
226	Lipid Matrix Nanoparticles: Pharmacokinetics and Biopharmaceutics. Current Nanoscience, 2009, 5, 358-	37.4	13
225	A special issue on Lipid-based delivery systems (liposomes, lipid nanoparticles, lipid matrices and medicines). <i>Journal of Biomedical Nanotechnology</i> , 2009 , 5, 315-6	4	13
224	Polineros usados como sistemas de transporte de principios ativos. <i>Polimeros</i> , 2011 , 21, 361-368	1.6	13
223	Is the Retinol-Binding Protein 4 a Possible Risk Factor for Cardiovascular Diseases in Obesity?. <i>International Journal of Molecular Sciences</i> , 2020 , 21,	6.3	13
222	The effect of andiroba oil and chitosan concentration on the physical properties of chitosan emulsion film. <i>Polimeros</i> , 2016 , 26, 168-175	1.6	13
221	Biosurfactants: Properties and Applications in Drug Delivery, Biotechnology and Ecotoxicology. <i>Bioengineering</i> , 2021 , 8,	5.3	13
220	Development, Cytotoxicity and Eye Irritation Profile of a New Sunscreen Formulation Based on Benzophenone-3-poly(Eaprolactone) Nanocapsules. <i>Toxics</i> , 2019 , 7,	4.7	12
219	Effect of cryoprotectants on the reconstitution of silica nanoparticles produced by solgel technology. <i>Journal of Thermal Analysis and Calorimetry</i> , 2015 , 120, 1001-1007	4.1	12
218	Effect of Polysaccharide Sources on the Physicochemical Properties of Bromelain-Chitosan Nanoparticles. <i>Polymers</i> , 2019 , 11,	4.5	12
217	Role of Excipients in formulation development and biocompatibility of lipid nanoparticles (SLNs/NLCs) 2017 , 811-843		12
216	Current efforts and the potential of nanomedicine in treating fungal keratitis. <i>Expert Review of Ophthalmology</i> , 2010 , 5, 365-384	1.5	12
215	Study of pre-formulation and development of solid lipid nanoparticles containing perillyl alcohol. <i>Journal of Thermal Analysis and Calorimetry</i> , 2020 , 141, 767-774	4.1	12
214	Natural products in diabetes research: quantitative literature analysis. <i>Natural Product Research</i> , 2021 , 35, 5813-5827	2.3	12

213	Double membrane based on lidocaine-coated polymyxin-alginate nanoparticles for wound healing: In vitro characterization and in vivo tissue repair. <i>International Journal of Pharmaceutics</i> , 2020 , 591, 120	0064	12
212	Nanomedicine-based technologies and novel biomarkers for the diagnosis and treatment of Alzheimer's disease: from current to future challenges. <i>Journal of Nanobiotechnology</i> , 2021 , 19, 122	9.4	12
211	Factors Affecting the Retention Efficiency and Physicochemical Properties of Spray Dried Lipid Nanoparticles Loaded with Essential Oil. <i>Biomolecules</i> , 2020 , 10,	5.9	11
210	Lignans: Quantitative Analysis of the Research Literature. Frontiers in Pharmacology, 2020 , 11, 37	5.6	11
209	Structural comparison, physicochemical properties, and in vitro release profile of curcumin-loaded lyotropic liquid crystalline nanoparticle: Influence of hydrotrope as interface stabilizers. <i>Journal of Molecular Liquids</i> , 2020 , 306, 112861	6	11
208	Neoplastic Multifocal Skin Lesions: Biology, Etiology, and Targeted Therapies for Nonmelanoma Skin Cancers. <i>Skin Pharmacology and Physiology</i> , 2018 , 31, 59-73	3	11
207	Myasthenia gravis: State of the art and new therapeutic strategies. <i>Journal of Neuroimmunology</i> , 2019 , 337, 577080	3.5	11
206	Didanosine-loaded chitosan microspheres optimized by surface-response methodology: a modified "Maximum Likelihood Classification" approach formulation for reverse transcriptase inhibitors. <i>Biomedicine and Pharmacotherapy</i> , 2015 , 70, 46-52	7.5	11
205	Training of conversational skills with institutionalized elderly: a preliminary study. <i>Perceptual and Motor Skills</i> , 1988 , 66, 923-6	2.2	11
204	Synthesis, biological evaluation and structure-activity relationships of self-assembled and solubilization properties of amphiphilic quaternary ammonium derivatives of quinuclidine. <i>Journal of Molecular Liquids</i> , 2018 , 272, 722-730	6	11
203	Characterization of biopolymer membranes and films: Physicochemical, mechanical, barrier, and biological properties 2020 , 67-95		10
202	In Vitro Characterization, Modelling, and Antioxidant Properties of Polyphenon-60 from Green Tea in Eudragit S100-2 Chitosan Microspheres. <i>Nutrients</i> , 2020 , 12,	6.7	10
201	Release kinetics and cell viability of ibuprofen nanocrystals produced by melt-emulsification. <i>Colloids and Surfaces B: Biointerfaces</i> , 2018 , 166, 24-28	6	10
200	Thermodynamic behavior of lipid nanoparticles upon delivery of Vitamin E derivatives into the skin: in vitro studies. <i>Journal of Thermal Analysis and Calorimetry</i> , 2012 , 108, 275-282	4.1	10
199	Lipid Nanoparticles as Carriers for the Treatment of Neurodegeneration Associated with Alzheimer's Disease and Glaucoma: Present and Future Challenges. <i>Current Pharmaceutical Design</i> , 2020 , 26, 1235-1250	3.3	10
198	Lipid Nanoparticles for the Posterior Eye Segment <i>Pharmaceutics</i> , 2021 , 14,	6.4	10
197	Nontoxic antimicrobial micellar systems based on mono- and dicationic Dabco-surfactants and furazolidone: Structure-solubilization properties relationships. <i>Journal of Molecular Liquids</i> , 2019 , 296, 112062	6	9
196	Influence of lipids on the properties of solid lipid nanoparticles from microemulsion technique. <i>European Journal of Lipid Science and Technology</i> , 2013 , 115, 820-824	3	9

195	Lipid Nanoparticles (Solid Lipid Nanoparticles and Nanostructured Lipid Carriers) for Cosmetic, Dermal, and Transdermal Applications. <i>Drugs and the Pharmaceutical Sciences</i> , 2007 , 213-233		9
194	Physicochemical and biopharmaceutical aspects influencing skin permeation and role of SLN and NLC for skin drug delivery <i>Heliyon</i> , 2022 , 8, e08938	3.6	9
193	Bilayer Mucoadhesive Buccal Film for Mucosal Ulcers Treatment: Development, Characterization, and Single Study Case. <i>Pharmaceutics</i> , 2020 , 12,	6.4	9
192	Thymus carnosus extracts induce anti-proliferative activity in Caco-2 cells through mechanisms that involve cell cycle arrest and apoptosis. <i>Journal of Functional Foods</i> , 2019 , 54, 128-135	5.1	9
191	Microemulsions and Nanoemulsions in Skin Drug Delivery Bioengineering, 2022, 9,	5.3	9
190	Association of Platelet-Rich Plasma and Auto-Crosslinked Hyaluronic Acid Microparticles: Approach for Orthopedic Application. <i>Polymers</i> , 2019 , 11,	4.5	8
189	The Nutraceutical Value of Carnitine and Its Use in Dietary Supplements. <i>Molecules</i> , 2020 , 25,	4.8	8
188	Quinoline- and Benzoselenazole-Derived Unsymmetrical Squaraine Cyanine Dyes: Design, Synthesis, Photophysicochemical Features and Light-Triggerable Antiproliferative Effects against Breast Cancer Cell Lines. <i>Materials</i> , 2020 , 13,	3.5	8
187	Praziquantel-loaded solid lipid nanoparticles: Production, physicochemical characterization, release profile, cytotoxicity and in vitro activity against Schistosoma mansoni. <i>Journal of Drug Delivery Science and Technology</i> , 2020 , 58, 101784	4.5	8
186	Solid dispersion of praziquantel enhanced solubility and improve the efficacy of the schistosomiasis treatment. <i>Journal of Drug Delivery Science and Technology</i> , 2018 , 45, 124-134	4.5	8
185	Advances in antibiotic nanotherapy 2018 , 233-259		8
184	Analysis of phase transition and dehydration processes of nevirapine. <i>Journal of Thermal Analysis and Calorimetry</i> , 2012 , 108, 53-57	4.1	8
183	Fruit Wastes as a Valuable Source of Value-Added Compounds: A Collaborative Perspective. <i>Molecules</i> , 2021 , 26,	4.8	8
182	Astragalus (Astragalus membranaceus Bunge): botanical, geographical, and historical aspects to pharmaceutical components and beneficial role. <i>Rendiconti Lincei</i> , 2021 , 32, 625-642	1.7	8
181	Biosynthesis of Silver Nanoparticles Mediated by Entomopathogenic Fungi: Antimicrobial Resistance, Nanopesticides, and Toxicity. <i>Antibiotics</i> , 2021 , 10,	4.9	8
180	Ginger (Zingiber officinale Roscoe) as a nutraceutical: Focus on the metabolic, analgesic, and antiinflammatory effects. <i>Phytotherapy Research</i> , 2020 , 35, 2403	6.7	8
179	Entomopathogenic Fungi Biomass Production and Extracellular Biosynthesis of Silver Nanoparticles for Bioinsecticide Action. <i>Applied Sciences (Switzerland)</i> , 2021 , 11, 2465	2.6	8
178	Rheology of nanostructured lipid carriers (NLC) suspended in a viscoelastic medium. <i>Die Pharmazie</i> , 2005 , 60, 671-3	1.5	8

(2020-2015)

177	Silica-based matrices: State of the art and new perspectives for therapeutic drug delivery. <i>Biotechnology and Applied Biochemistry</i> , 2015 , 62, 754-64	2.8	7	
176	Antidermatophytic Activity and Skin Retention of Clotrimazole Microemulsion and Microemulsion-Based Gel in Comparison to Conventional Cream. <i>Skin Pharmacology and Physiology</i> , 2018 , 31, 292-297	3	7	
175	Innovative nanocompounds for cutaneous administration of classical antifungal drugs: a systematic review. <i>Journal of Dermatological Treatment</i> , 2019 , 30, 617-626	2.8	7	
174	Antioxidant Properties of Bee Products Derived from Medicinal Plants as Beekeeping Sources. <i>Agriculture (Switzerland)</i> , 2021 , 11, 1136	3	7	
173	Development of Lactoferrin-Loaded Liposomes for the Management of Dry Eye Disease and Ocular Inflammation. <i>Pharmaceutics</i> , 2021 , 13,	6.4	7	
172	Surface modification of pralidoxime chloride-loaded solid lipid nanoparticles for enhanced brain reactivation of organophosphorus-inhibited AChE: Pharmacokinetics in rat. <i>Toxicology</i> , 2020 , 444, 1525	7 8 ·4	7	
171	Polyphenols for skin cancer: Chemical properties, structure-related mechanisms of action and new delivery systems. <i>Studies in Natural Products Chemistry</i> , 2019 , 63, 21-42	1.5	7	
170	Epigallocatechin-3-gallate PEGylated poly(lactic-co-glycolic) acid nanoparticles mitigate striatal pathology and motor deficits in 3-nitropropionic acid intoxicated mice. <i>Nanomedicine</i> , 2021 , 16, 19-35	5.6	7	
169	Elastic and Ultradeformable Liposomes for Transdermal Delivery of Active Pharmaceutical Ingredients (APIs). <i>International Journal of Molecular Sciences</i> , 2021 , 22,	6.3	7	
168	Overcoming multi-resistant leishmania treatment by nanoencapsulation of potent antimicrobials. Journal of Chemical Technology and Biotechnology, 2020 , 96, 2123	3.5	6	
167	Nanopharmaceuticals for Eye Administration: Sterilization, Depyrogenation and Clinical Applications. <i>Biology</i> , 2020 , 9,	4.9	6	
166	Ocular Cell Lines and Genotoxicity Assessment. <i>International Journal of Environmental Research and Public Health</i> , 2020 , 17,	4.6	6	
165	Psoriasis vulgaris P athophysiology of the disease and its classical treatment versus new drug delivery systems 2018 , 379-406		6	
164	Solid Lipid Nanoparticles (SLN) 2013, 91-116		6	
163	Etiopathogenesis, Classical Immunotherapy and Innovative Nanotherapeutics for Inflammatory Neurological Disorders. <i>Current Nanoscience</i> , 2011 , 7, 2-20	1.4	6	
162	Intrasubband spin-flip relaxation by one-magnon processes in Cd1\(\mathbb{M}\)MnxTe quantum wells. <i>Physical Review B</i> , 2003 , 68,	3.3	6	
161	Epilepsy in Neurodegenerative Diseases: Related Drugs and Molecular Pathways. <i>Pharmaceuticals</i> , 2021 , 14,	5.2	6	
160	ECyclodextrin/Isopentyl Caffeate Inclusion Complex: Synthesis, Characterization and Antileishmanial Activity. <i>Molecules</i> , 2020 , 25,	4.8	6	

159	Stearic Acid, Beeswax and Carnauba Wax as Green Raw Materials for the Loading of Carvacrol into Nanostructured Lipid Carriers. <i>Applied Sciences (Switzerland)</i> , 2020 , 10, 6267	2.6	6
158	Otoliths-composed gelatin/sodium alginate scaffolds for bone regeneration. <i>Drug Delivery and Translational Research</i> , 2020 , 10, 1716-1728	6.2	6
157	Cannabidiol in Neurological and Neoplastic Diseases: Latest Developments on the Molecular Mechanism of Action. <i>International Journal of Molecular Sciences</i> , 2021 , 22,	6.3	6
156	Quality by Design Approach for the Development of Liposome Carrying Ghrelin for Intranasal Administration. <i>Pharmaceutics</i> , 2021 , 13,	6.4	6
155	Psoriasis: From Pathogenesis to Pharmacological and Nano-Technological-Based Therapeutics. <i>International Journal of Molecular Sciences</i> , 2021 , 22,	6.3	6
154	Histological Evidence of Wound Healing Improvement in Rats Treated with Oral Administration of Hydroalcoholic Extract of. <i>Current Issues in Molecular Biology</i> , 2021 , 43, 335-352	2.9	6
153	Self-assembled quaternary ammonium surfactants for pharmaceuticals and biotechnology 2018 , 601-61	18	6
152	Translating nanotechnology from bench to pharmaceutical market: barriers, success, and promises. <i>Journal of Drug Delivery</i> , 2012 , 2012, 678910	2.3	5
151	Lipid Nanomaterials for Targeted Delivery of Dermocosmetic Ingredients: Advances in Photoprotection and Skin Anti-Aging <i>Nanomaterials</i> , 2022 , 12,	5.4	5
150	Mono- and Dicationic DABCO/Quinuclidine Composed Nanomaterials for the Loading of Steroidal Drug: 3 Factorial Design and Physicochemical Characterization. <i>Nanomaterials</i> , 2021 , 11,	5.4	5
149	Development of topical eye-drops of lactoferrin-loaded biodegradable nanoparticles for the treatment of anterior segment inflammatory processes. <i>International Journal of Pharmaceutics</i> , 2021 , 609, 121188	6.5	5
148	Croton argyrophyllus Kunth Essential Oil-Loaded Solid Lipid Nanoparticles: Evaluation of Release Profile, Antioxidant Activity and Cytotoxicity in a Neuroblastoma Cell Line. <i>Sustainability</i> , 2020 , 12, 7697	,3.6	5
147	Development and Evaluation of Superabsorbent Hydrogels Based on Natural Polymers. <i>Polymers</i> , 2020 , 12,	4.5	5
146	Natural Ergot Alkaloids in Ocular Pharmacotherapy: Known Molecules for Novel Nanoparticle-Based Delivery Systems. <i>Biomolecules</i> , 2020 , 10,	5.9	5
145	Sage Species Case Study on a Spontaneous Mediterranean Plant to Control Phytopathogenic Fungi and Bacteria. <i>Forests</i> , 2020 , 11, 704	2.8	5
144	Primary Humoral Immune Deficiencies: Overlooked Mimickers of Chronic Immune-Mediated Gastrointestinal Diseases in Adults. <i>International Journal of Molecular Sciences</i> , 2020 , 21,	6.3	5
143	Olive Pulp and Exogenous Enzymes Feed Supplementation Effect on the Carcass and Offal in Broilers: A Preliminary Study. <i>Agriculture (Switzerland)</i> , 2020 , 10, 359	3	5
142	Cancer Nanopharmaceuticals: Physicochemical Characterization and In Vitro/In Vivo Applications. <i>Cancers</i> , 2021 , 13,	6.6	5

(2021-2021)

141	Surface Functionalization of PLGA Nanoparticles to Increase Transport across the BBB for Alzheimer Disease. <i>Applied Sciences (Switzerland)</i> , 2021 , 11, 4305	2.6	5
140	Wine Polyphenols and Health: Quantitative Research Literature Analysis. <i>Applied Sciences</i> (Switzerland), 2021 , 11, 4762	2.6	5
139	Encapsulation of Active Pharmaceutical Ingredients in Lipid Micro/Nanoparticles for Oral Administration by Spray-Cooling. <i>Pharmaceutics</i> , 2021 , 13,	6.4	5
138	Advances in nanobiomaterials for oncology nanomedicine 2016 , 91-115		5
137	Therapy for prevention and treatment of skin ionizing radiation damage: a review. <i>International Journal of Radiation Biology</i> , 2019 , 95, 537-553	2.9	5
136	Oxidative stability of high oleic sunflower oil during deep-frying process of purple potato. <i>Heliyon</i> , 2021 , 7, e06294	3.6	5
135	Development and Characterization of Biointeractive Gelatin Wound Dressing Based on Extract of Linn. <i>Pharmaceutics</i> , 2020 , 12,	6.4	4
134	Mitotane liposomes for potential treatment of adrenal cortical carcinoma: intestinal permeation and bioavailability. <i>Pharmaceutical Development and Technology</i> , 2020 , 25, 949-961	3.4	4
133	Multiple Cell Signalling Pathways of Human Proinsulin C-Peptide in Vasculopathy Protection. <i>International Journal of Molecular Sciences</i> , 2020 , 21,	6.3	4
132	Chitosan-based nanocomposites for drug delivery 2018 , 1-26		4
132	Chitosan-based nanocomposites for drug delivery 2018 , 1-26 Compatibility studies of nevirapine in physical mixtures with excipients for oral HAART. <i>Materials Science and Engineering C</i> , 2013 , 33, 596-602	8.3	4
	Compatibility studies of nevirapine in physical mixtures with excipients for oral HAART. <i>Materials</i>	8.3	
131	Compatibility studies of nevirapine in physical mixtures with excipients for oral HAART. <i>Materials Science and Engineering C</i> , 2013 , 33, 596-602 Poliheros sintlicos biodegrad@eis: matfias-primas e mlodos de produid de micropartidulas		
131	Compatibility studies of nevirapine in physical mixtures with excipients for oral HAART. <i>Materials Science and Engineering C</i> , 2013 , 33, 596-602 Polineros sinticos biodegradveis: matifias-primas e mitodos de produio de microparticulas para uso em drug delivery e liberaio controlada. <i>Polimeros</i> , 2011 , 21, 286-292 Korringa relaxation time of magnetic ion system near a two-dimensional electron gas. <i>Solid State</i>	1.6	4
131 130 129	Compatibility studies of nevirapine in physical mixtures with excipients for oral HAART. <i>Materials Science and Engineering C</i> , 2013 , 33, 596-602 Polineros sinticos biodegradieis: matrias-primas e mtodos de produio de micropartidulas para uso em drug delivery e liberaio controlada. <i>Polimeros</i> , 2011 , 21, 286-292 Korringa relaxation time of magnetic ion system near a two-dimensional electron gas. <i>Solid State Communications</i> , 2004 , 129, 605-608 DABCO-Customized Nanoemulsions: Characterization, Cell Viability and Genotoxicity in Retinal	1.6	4
131 130 129 128	Compatibility studies of nevirapine in physical mixtures with excipients for oral HAART. <i>Materials Science and Engineering C</i> , 2013 , 33, 596-602 Polfineros sintticos biodegrad@eis: matfias-primas e mtodos de produto de micropart@ulas para uso em drug delivery e liberato controlada. <i>Polimeros</i> , 2011 , 21, 286-292 Korringa relaxation time of magnetic ion system near a two-dimensional electron gas. <i>Solid State Communications</i> , 2004 , 129, 605-608 DABCO-Customized Nanoemulsions: Characterization, Cell Viability and Genotoxicity in Retinal Pigmented Epithelium and Microglia Cells. <i>Pharmaceutics</i> , 2021 , 13, Development, in vitro release and in vivo bioavailability of sustained release nateglinide tablets.	1.6 1.6 6.4	4 4 4
131 130 129 128	Compatibility studies of nevirapine in physical mixtures with excipients for oral HAART. <i>Materials Science and Engineering C</i> , 2013 , 33, 596-602 Politheros sintiticos biodegrad veis: matifias-primas e mitodos de produio de microparticulas para uso em drug delivery e libera controlada. <i>Polimeros</i> , 2011 , 21, 286-292 Korringa relaxation time of magnetic ion system near a two-dimensional electron gas. <i>Solid State Communications</i> , 2004 , 129, 605-608 DABCO-Customized Nanoemulsions: Characterization, Cell Viability and Genotoxicity in Retinal Pigmented Epithelium and Microglia Cells. <i>Pharmaceutics</i> , 2021 , 13, Development, in vitro release and in vivo bioavailability of sustained release nateglinide tablets. <i>Journal of Drug Delivery Science and Technology</i> , 2020 , 55, 101355 Cachexia: Pathophysiology and Ghrelin Liposomes for Nose-to-Brain Delivery. <i>International Journal</i>	1.6 1.6 6.4 4.5	4 4

123	The Potential Role of Polyelectrolyte Complex Nanoparticles Based on Cashew Gum, Tripolyphosphate and Chitosan for the Loading of Insulin. <i>International Journal of Diabetology</i> , 2021 , 2, 107-116	1	4
122	Loading of 5-aminosalicylic in solid lipid microparticles (SLM). <i>Journal of Thermal Analysis and Calorimetry</i> , 2020 , 139, 1151-1159	4.1	4
121	Antimycotic nail polish based on humic acid-coated silver nanoparticles for onychomycosis. <i>Journal of Chemical Technology and Biotechnology</i> , 2021 , 96, 2208	3.5	4
120	Anti-Tumor Efficiency of Perillylalcohol/Ecyclodextrin Inclusion Complexes in a Sarcoma S180-Induced Mice Model. <i>Pharmaceutics</i> , 2021 , 13,	6.4	4
119	Silver nanoparticles obtained from Brazilian pepper extracts with synergistic anti-microbial effect: production, characterization, hydrogel formulation, cell viability, and efficacy. <i>Pharmaceutical Development and Technology</i> , 2021 , 26, 539-548	3.4	4
118	Mesoporous silica nanoparticles as drug delivery systems against melanoma 2018 , 437-466		4
117	Lipid-Polymeric Films: Composition, Production and Applications in Wound Healing and Skin Repair. <i>Pharmaceutics</i> , 2021 , 13,	6.4	4
116	Applications of nanocomposite materials in the delivery of anticancer drugs 2018 , 339-352		3
115	Analysis of absorption of didanosine tablets in male adult dogs by HPLC. <i>Journal of Pharmaceutical Analysis</i> , 2012 , 2, 29-34	14	3
114	Desenvolvimento, produß e caracterizaß de nanocristais de fEmacos pouco solüeis. <i>Quimica Nova</i> , 2012 , 35, 1848-1853	1.6	3
113	Editorial [Hot topic: An Overview on the Design, Development, Characterization and Applications of Novel Nanomedicines for Brain Targeting (Guest Editor: Eliana B. Souto)]. <i>Current Nanoscience</i> , 2011 , 7, 1-1	1.4	3
112	Perspectives in Nanomedicine-Based Research Towards Cancer Therapies. <i>Current Nanoscience</i> , 2011 , 7, 142-152	1.4	3
111	Development of a Brazilian gammafieutron dosimeter. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2008 , 266, 3174-3177	1.2	3
110	Materials International joins the Family of Platinum Open Access Journals. <i>Materials International</i> , 2019 , 1, 0001-0001	1.8	3
109	How could nanobiotechnology improve treatment outcomes of anti-TNF-therapy in inflammatory bowel disease? Current knowledge, future directions. <i>Journal of Nanobiotechnology</i> , 2021 , 19, 346	9.4	3
108	Genotoxicity Assessment of Metal-Based Nanocomposites Applied in Drug Delivery. <i>Materials</i> , 2021 , 14,	3.5	3
107	Scaffolds for Tissue Engineering: A State-of-the-Art Review Concerning Types, Properties, Materials, Processing, and Characterization 2020 , 647-676		3
106	Cold pressed argan (Argania spinose) oil 2020 , 459-465		3

(2016-2020)

105	Chemical and Physical Properties of Meadowfoam Seed Oil and Extra Virgin Olive Oil: Focus on Vibrational Spectroscopy. <i>Journal of Spectroscopy</i> , 2020 , 2020, 1-9	1.5	3
104	Cytotoxic, Antitumor and Toxicological Profile of Leaf Extract. <i>Molecules</i> , 2020 , 25,	4.8	3
103	Effect of Chitosan and Aloe Vera Extract Concentrations on the Physicochemical Properties of Chitosan Biofilms. <i>Polymers</i> , 2021 , 13,	4.5	3
102	Lipid Nanoparticles Loaded with Iridoid Glycosides: Development and Optimization Using Experimental Factorial Design. <i>Molecules</i> , 2021 , 26,	4.8	3
101	From oral formulations to drug-eluting implants: using 3D and 4D printing to develop drug delivery systems and personalized medicine. <i>Bio-Design and Manufacturing</i> ,1	4.7	3
100	Development and Characterization of Nanoemulsions for Ophthalmic Applications: Role of Cationic Surfactants <i>Materials</i> , 2021 , 14,	3.5	3
99	Antibacterial activity of chitosan/collagen membranes containing red propolis extract. <i>Die Pharmazie</i> , 2020 , 75, 75-81	1.5	3
98	Retinal Drug Delivery: Rethinking Outcomes for the Efficient Replication of Retinal Behavior. <i>Applied Sciences (Switzerland)</i> , 2020 , 10, 4258	2.6	2
97	Skin rejuvenation: Biopolymers applied to UV sunscreens and sheet masks 2020 , 309-330		2
96	Natural polysaccharides in wound dressing applications 2019 , 549-566		2
95	Cancer therapies: applications, nanomedicines and nanotoxicology 2017 , 241-260		2
94	Solid dosage forms for active antiretroviral therapy (HAART): dissolution profile study of nevirapine by experimental factorial design. <i>Pharmaceutical Development and Technology</i> , 2013 , 18, 428-33	3.4	2
93	Nanopartilulas de lipilios sildos: mitodos clissicos de produb laboratorial. <i>Quimica Nova</i> , 2011 ,	1.6	2
92	Stability enhancement of Lactobacillus acidophilus and Bifidobacterium lactis in lipid microparticles produced by melt emulsification. <i>New Biotechnology</i> , 2009 , 25, S56-S57	6.4	2
91	Fast neutron dose response of a commercial polycarbonate. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,</i> 2007 , 580, 335-337	1.2	2
90	Magnetomagnon resonances and oscillations of conductivity in diluted magnetic semiconductor quantum wires. <i>Journal of Applied Physics</i> , 2007 , 102, 113719	2.5	2
89	Development and optimization of Riluzole-loaded biodegradable nanoparticles incorporated in a mucoadhesive in situ gel for the posterior eye segment <i>International Journal of Pharmaceutics</i> , 2021 , 612, 121379	6.5	2

87	Lipid Nanocarriers for Hyperproliferative Skin Diseases. <i>Cancers</i> , 2021 , 13,	6.6	2
86	Phase Behavior of Polymorphic Fats in Drug Delivery Systems - A Review of the State of Art. <i>Current Pharmaceutical Design</i> , 2018 , 24, 2508-2512	3.3	2
85	Topical Targeting Therapies for Sexually Transmitted Diseases. <i>Current Nanoscience</i> , 2012 , 8, 486-490	1.4	2
84	Development of Gel-Core Solid Lipid Nanoparticles as Drug Delivery Systems for Hydrophilic Molecules. <i>Current Nanoscience</i> , 2016 , 12, 598-604	1.4	2
83	Volatile Nitrogenous Compounds from Bacteria: Source of Novel Bioactive Compounds. <i>Chemistry and Biodiversity</i> , 2021 , 18, e2100549	2.5	2
82	Vitex agnus-castus L.: Main Features and Nutraceutical Perspectives. <i>Forests</i> , 2020 , 11, 761	2.8	2
81	Spray-Dried Structured Lipid Carriers for the Loading of : New Nutraceutical and Food Preservative. <i>Foods</i> , 2020 , 9,	4.9	2
80	New Trends in Drug Delivery Systems for Veterinary Applications. <i>Pharmaceutical Nanotechnology</i> , 2021 , 9, 15-25	4	2
79	Citrus sinensis Essential Oil-Based Microemulsions: Green Synthesis, Characterization, and Antibacterial and Larvicide Activities. <i>ACS Food Science & Technology</i> , 2021 , 1, 462-469		2
78	Essential Oil Attenuates Bleomycin-Induced Pulmonary Fibrosis in a Murine Model. <i>Pharmaceutics</i> , 2021 , 13,	6.4	2
77	Advances in nanobiomaterials for topical administrations: new galenic and cosmetic formulations 2016 , 1-23		2
76	Surface modification of nanocarriers as a strategy to enhance the direct nose-to-brain drug delivery 2021 , 93-114		2
75	Drug nanocrystals 2018 , 239-253		2
74	Red seaweeds strengthening the nexus between nutrition and health: phytochemical characterization and bioactive properties of Grateloupia turuturu and Porphyra umbilicalis extracts. <i>Journal of Applied Phycology</i> , 2021 , 33, 3365-3381	3.2	2
73	State of the Art on Toxicological Mechanisms of Metal and Metal Oxide Nanoparticles and Strategies to Reduce Toxicological Risks. <i>Toxics</i> , 2021 , 9,	4.7	2
72	Bee Products: A Representation of Biodiversity, Sustainability, and Health. <i>Life</i> , 2021 , 11,	3	2
71	Validation of an UV spectrophotometric assay for the quantification of polymyxin B in solid lipid nanoparticles. <i>Die Pharmazie</i> , 2015 , 70, 693-7	1.5	2
70	Exudative versus Nonexudative Age-Related Macular Degeneration: Physiopathology and Treatment Options <i>International Journal of Molecular Sciences</i> , 2022 , 23,	6.3	2

(2020-2022)

69	Permeability, anti-inflammatory and anti-VEGF profiles of steroidal-loaded cationic nanoemulsions in retinal pigment epithelial cells under oxidative stress <i>International Journal of Pharmaceutics</i> , 2022 , 617, 121615	6.5	2
68	Bioactive hybrid nanowires 2020 , 1-13		1
67	Diabetic Retinopathy and Ocular Melanoma: How Far We Are?. <i>Applied Sciences (Switzerland)</i> , 2020 , 10, 2777	2.6	1
66	Nanopharmaceuticals in immunology: What new in research? 2018 , 1-22		1
65	Novel Neuroprotective Formulations Based on St. John Wort Extract. <i>Journal of Food Research</i> , 2014 , 3, 3	1.3	1
64	Nanobiotechnology approaches for targeted delivery of pharmaceutics and cosmetics ingredients. <i>International Journal of Nanotechnology</i> , 2011 , 8, 66	1.5	1
63	Optimization of Cationic SLN for Gene Delivery. <i>Scientia Pharmaceutica</i> , 2010 , 78, 561-561	4.3	1
62	Brazilian gamma-neutron dosemeter: response to 241AmBe and 252Cf neutron sources. <i>Radiation Protection Dosimetry</i> , 2011 , 144, 215-7	0.9	1
61	Production of Biofunctionalized Solid Lipid Nanoparticles for Site-specific Drug Delivery 2007,		1
60	Comparative study between the viscoelastic behaviors of different lipid nanoparticle formulations. <i>International Journal of Cosmetic Science</i> , 2005 , 27, 36-36	2.7	1
59	Spin wave amplification in antiferromagnetic semiconductors stimulated by infrared laser field. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2001 , 286, 353-356	2.3	1
58	Essential oils with antimicrobial properties formulated in lipid nanoparticles: Review of the state of the art 2017 , 3-13		1
57	An Account of Commercially Important Polysaccharide Derivatives and Their Industrial Applications 2016 , 425-434		1
56	Cellular and Molecular Toxicology of Nanoparticles 2020 , 489-528		1
55	Orange thyme: Phytochemical profiling, bioactivities of extracts and potential health benefits <i>Food Chemistry: X</i> , 2021 , 12, 100171	4.7	1
54	Archaeosomes for Skin Injuries 2017 , 323-355		1
53	Sol G el Carrier System: A Novel Controlled Drug Delivery 2012 , 151-166		1
52	23 central composite rotatable design for the production of neem oil nanoemulsion for antifungal and antiparasitic applications. <i>Journal of Chemical Technology and Biotechnology</i> , 2020 , 96, 2159	3.5	1

51	Applied Nanotechnologies in Anticoagulant Therapy: From Anticoagulants to Coagulation Test Performance of Drug Delivery Systems. <i>Applied Nano</i> , 2021 , 2, 98-117	1	1
50	Encapsulation of nutraceuticals in novel delivery systems 2016 , 305-342		1
49	Ethical issues in research and development of nanoparticles 2020 , 157-168		1
48	Polymer nanogels: Fabrication, structural behavior, and biological applications 2021 , 97-111		1
47	Metrology, Agriculture and Food: Literature Quantitative Analysis. <i>Agriculture (Switzerland)</i> , 2021 , 11, 889	3	1
46	Effect of nanoencapsulation of blueberry (Vaccinium myrtillus): A green source of flavonoids with antioxidant and photoprotective properties. <i>Sustainable Chemistry and Pharmacy</i> , 2021 , 23, 100515	3.9	1
45	Analysis of the mechanisms of action of isopentenyl caffeate against Leishmania. <i>Biochimie</i> , 2021 , 189, 158-167	4.6	1
44	Deep-frying purple potato using sunflower oil: effect on the polyphenols, anthocyanins and antioxidant activity <i>Heliyon</i> , 2022 , 8, e09337	3.6	1
43	Almond oil O/W nanoemulsions: Potential application for ocular delivery. <i>Journal of Drug Delivery Science and Technology</i> , 2022 , 103424	4.5	1
42	Obesity and the Brain. <i>International Journal of Molecular Sciences</i> , 2022 , 23, 6145	6.3	1
41	Neurotensins and their therapeutic potential: research field study. <i>Future Medicinal Chemistry</i> , 2020 , 12, 1779-1803	4.1	0
40	Liquid crystalline drug delivery systems 2020 , 141-149		O
39	Photoprotection and skin irritation effect of hydrogels containing hydroalcoholic extract of red propolis: A natural pathway against skin cancer <i>Heliyon</i> , 2022 , 8, e08893	3.6	О
38	Anti-leishmanial compounds from microbial metabolites: a promising source. <i>Applied Microbiology and Biotechnology</i> , 2021 , 105, 8227-8240	5.7	О
37	Epidemiology of COVID-19 in the State of Sergipe/Brazil and Its Relationship with Social Indicators. <i>Epidemiologia</i> , 2021 , 2, 262-270	2.8	О
36	Physicochemical, pharmacokinetic, and pharmacodynamic characterization of isradipine tablets for controlled release. <i>Pharmaceutical Development and Technology</i> , 2021 , 26, 92-100	3.4	O
35	Effectiveness of Different Cellulose-Based Filtration Materials against Inhalation of SARS-CoV-2-Like Particles. <i>Nanomanufacturing</i> , 2021 , 1, 57-66		О
34	Exploring Innovative Leishmaniasis Treatment: Drug Targets from Pre-Clinical to Clinical Findings. <i>Chemistry and Biodiversity</i> , 2021 , 18, e2100336	2.5	O

(2018-2021)

33	Cashew Gum (Anacardium occidentale) as a Potential Source for the Production of Tocopherol-Loaded Nanoparticles: Formulation, Release Profile and Cytotoxicity. <i>Applied Sciences (Switzerland)</i> , 2021 , 11, 8467	2.6	O
32	Rhodiola rosea: main features and its beneficial properties. <i>Rendiconti Lincei</i> , 2022 , 33, 71-82	1.7	O
31	Lipid-Drug Conjugates and Nanoparticles for the Cutaneous Delivery of Cannabidiol. <i>International Journal of Molecular Sciences</i> , 2022 , 23, 6165	6.3	O
30	Non-melanoma skin cancers: physio-pathology and role of lipid delivery systems in new chemotherapeutic treatments. <i>Neoplasia</i> , 2022 , 30, 100810	6.4	O
29	Intellectual Property and Nanopharmaceuticals 2012 , 3-24		
28	Nanomedicines for Immunization and Vaccines 2012 , 435-450		
27	Pharmaceutical Manufacturing Validation Principles 2010 , 1		
26	Lipid Nanoparticle-Based Systems for Delivery of Biomacromolecule Therapeutics129-148		
25	Pharmaceutical Manufacturing Validation Principles811-838		
24	Magneto-quantum oscillations of the Korringa relaxation rate of manganese ion near a two-dimensional electron gas. <i>Microelectronics Journal</i> , 2005 , 36, 1041-1044	1.8	
23	Transverse magneto-conductivity of diluted magnetic semicon-ductor quantum wires. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2005 , 2, 3145-3148		
22	Relaxation rate of manganese ion in the presence of a two-dimensional electron gas. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2005 , 2, 3149-3152		
21	Nutraceuticals and functional beverages: Focus on Prebiotics and Probiotics active beverages 2022 , 25	1-258	
20	Liposomal formulations of oxybutynin and resiniferatoxin for the treatment of urinary diseases: improvement of drug tolerance upon intravesical. <i>Drug Delivery and Translational Research</i> , 2021 , 1	6.2	
19	Scientific-technological analysis and biological aspects of entomopathogenic fungus Aschersonia. <i>Sustainable Chemistry and Pharmacy</i> , 2021 , 24, 100562	3.9	
18	Biofate and cellular interactions of lipid nanoparticles 2022 , 211-246		
17	Risk Assessment of Injectable Nanoparticles Used as Nanomedicine 2021 , 248-258		
16	Multifunctional Nanocomposites for Biotherapeutic Applications. <i>Advances in Medical Technologies and Clinical Practice Book Series</i> , 2018 , 328-356	0.3	

15	Monoterpenes-Based Pharmaceuticals: A Review of Applications In Human Health and Drug Delivery Systems 2018 , 85-130	
14	Nanotechnological Interventions for Neurodegenerative Disorders Using Phytoactives 2018 , 201-219	
13	Mechanism of Action and Toxicological Profile of Essential Oils in Foodstuff 2019 , 211-230	
12	Microemulsions: Principles, Scope, Methods, and Applications in Transdermal Drug Delivery 2019 , 91-1	18
11	Organic/Zeolites Nanocomposite Membranes 2017 , 73-98	
10	Enhanced Dissolution Efficiency of Tamoxifen Combined with Methacrylate Copolymers in Amorphous Solid Dispersions. <i>Crystals</i> , 2020 , 10, 1046	2.3
9	Development of a Manometric Monitoring Method for Early Detection of Air Microbiological Contamination in the Bloodstream. <i>Atmosphere</i> , 2021 , 12, 702	2.7
8	Opuntia spp. in Cosmetics and Pharmaceuticals 2021 , 953-959	
7	Multifunctional Nanocomposites for Biotherapeutic Applications 2021 , 1444-1472	
6	In Vitro Methodologies for Toxicological Assessment of Drug Delivery Nanocarriers. <i>Environmental Chemistry for A Sustainable World</i> , 2021 , 203-227	0.8
5	Targeting of Lipid/Polymeric (Hybrid) Nanoparticles to the Brain for the Treatment of Degenerative Diseases 2018 , 147-168	
4	Advanced applications of alginates in biomedical 2021 , 321-337	
3	Biopharmaceutical challenges in using lipid nanoparticles for oral chemotherapy 2021 , 53-64	
2	Nanoparticle Products for the Eye: Preformulation, Formulation, and Manufacturing Considerations. <i>AAPS Advances in the Pharmaceutical Sciences Series</i> , 2021 , 409-447	0.5
1	Basal Cell Carcinoma: Pathology, Current Clinical Treatment, and Potential Use of Lipid Nanoparticles. <i>Cancers</i> , 2022 , 14, 2778	6.6