## Leonardo Schena

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7054870/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Control of olive anthracnose and leaf spot disease by bloom treatments with a pomegranate peel extract. Journal of the Saudi Society of Agricultural Sciences, 2022, 21, 248-254.                       | 1.0 | 4         |
| 2  | Extracts from Environmental Strains of Pseudomonas spp. Effectively Control Fungal Plant Diseases.<br>Plants, 2022, 11, 436.                                                                            | 1.6 | 4         |
| 3  | The Fungal Microbiome of Wheat Flour Includes Potential Mycotoxin Producers. Foods, 2022, 11, 676.                                                                                                      | 1.9 | 6         |
| 4  | Plant Genotype Shapes the Bacterial Microbiome of Fruits, Leaves, and Soil in Olive Plants. Plants, 2022, 11, 613.                                                                                      | 1.6 | 16        |
| 5  | Exploring microbiomes for plant disease management. Biological Control, 2022, 169, 104890.                                                                                                              | 1.4 | 10        |
| 6  | Preharvest and Postharvest Applications of a Pomegranate Peel Extract to Control Citrus Fruit Decay<br>During Storage and Shelf Life. Plant Disease, 2021, 105, 1013-1018.                              | 0.7 | 14        |
| 7  | Metagenomics Approaches for the Detection and Surveillance of Emerging and Recurrent Plant<br>Pathogens. Microorganisms, 2021, 9, 188.                                                                  | 1.6 | 55        |
| 8  | Experimental evidence of microbial inheritance in plants and transmission routes from seed to phyllosphere and root. Environmental Microbiology, 2021, 23, 2199-2214.                                   | 1.8 | 106       |
| 9  | Pomegranate Peel Extracts as Safe Natural Treatments to Control Plant Diseases and Increase the Shelf-Life and Safety of Fresh Fruits and Vegetables. Plants, 2021, 10, 453.                            | 1.6 | 22        |
| 10 | Soil Microbial Diversity Impacts Plant Microbiota More than Herbivory. Phytobiomes Journal, 2021, 5, 408-417.                                                                                           | 1.4 | 15        |
| 11 | Development and Application of a Quantitative PCR Detection Method to Quantify <i>Venturia<br/>oleaginea</i> in Asymptomatic Olive ( <i>Olea europaea</i> ) Leaves. Phytopathology, 2020, 110, 547-555. | 1.1 | 6         |
| 12 | Characterization of Colletotrichum ocimi Population Associated with Black Spot of Sweet Basil<br>(Ocimum basilicum) in Northern Italy. Plants, 2020, 9, 654.                                            | 1.6 | 18        |
| 13 | Effectiveness of a pomegranate peel extract (PGE) in reducing Listeria monocytogenes in vitro and on fresh-cut pear, apple and melon. European Food Research and Technology, 2020, 246, 1765-1772.      | 1.6 | 15        |
| 14 | Response of Tomato Rhizosphere Bacteria to Root-Knot Nematodes, Fenamiphos and Sampling Time<br>Shows Differential Effects on Low Level Taxa. Frontiers in Microbiology, 2020, 11, 390.                 | 1.5 | 5         |
| 15 | Revealing Cues for Fungal Interplay in the Plant–Air Interface in Vineyards. Frontiers in Plant Science,<br>2019, 10, 922.                                                                              | 1.7 | 36        |
| 16 | Selection of yeasts for their antiâ€mold activity and prospective use in table olive fermentation. Journal of Food Processing and Preservation, 2019, 43, e14259.                                       | 0.9 | 2         |
| 17 | Transcriptomic Analysis of Orange Fruit Treated with Pomegranate Peel Extract (PGE). Plants, 2019, 8, 101.                                                                                              | 1.6 | 19        |
| 18 | Diversity and Distribution of Phytophthora Species in Protected Natural Areas in Sicily. Forests, 2019, 10, 259.                                                                                        | 0.9 | 37        |

| #  | Article                                                                                                                                                                                                                      | IF  | CITATIONS      |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------------|
| 19 | Pre- and postharvest application of alternative means to control Alternaria Brown spot of citrus.<br>Crop Protection, 2019, 121, 73-79.                                                                                      | 1.0 | 16             |
| 20 | <i>Phytophthora oleae</i> sp. nov. causing fruit rot of olive in southern Italy. Plant Pathology, 2018, 67, 1362-1373.                                                                                                       | 1.2 | 26             |
| 21 | Metabarcoding: A powerful tool to investigate microbial communities and shape future plant protection strategies. Biological Control, 2018, 120, 1-10.                                                                       | 1.4 | 115            |
| 22 | First Report of Neofusicoccum batangarum as Causal Agent of Scabby Cankers of Cactus Pear (Opuntia) Tj ETQ                                                                                                                   | q0  | BT /Qverlock 1 |
| 23 | Impact of Bactrocera oleae on the fungal microbiota of ripe olive drupes. PLoS ONE, 2018, 13, e0199403.                                                                                                                      | 1.1 | 9              |
| 24 | Selection and Experimental Evaluation of Universal Primers to Study the Fungal Microbiome of Higher<br>Plants. Phytobiomes Journal, 2018, 2, 225-236.                                                                        | 1.4 | 28             |
| 25 | First report of collar and root rot caused by Phytophthora nicotianae on Lycium barbarum. Journal<br>of Plant Pathology, 2018, 100, 361-361.                                                                                 | 0.6 | 3              |
| 26 | Diversity of <i>Phytophthora</i> species in Valdivian rainforests and association with severe dieback symptoms. Forest Pathology, 2018, 48, e12443.                                                                          | 0.5 | 22             |
| 27 | Apple endophytic microbiota of different rootstock/scion combinations suggests a genotype-specific influence. Microbiome, 2018, 6, 18.                                                                                       | 4.9 | 155            |
| 28 | Characterization of Phytophthora infestans populations in northwestern Algeria during 2008–2014.<br>Fungal Biology, 2017, 121, 467-477.                                                                                      | 1.1 | 25             |
| 29 | Fungal communities associated with bark and ambrosia beetles trapped at international harbours.<br>Fungal Ecology, 2017, 28, 44-52.                                                                                          | 0.7 | 44             |
| 30 | Quantitative detection of Colletotrichum godetiae and C. acutatum sensu stricto in the phyllosphere<br>and carposphere of olive during four phenological phases. European Journal of Plant Pathology, 2017,<br>149, 337-347. | 0.8 | 40             |
| 31 | Evaluation of a Pomegranate Peel Extract as an Alternative Means to Control Olive Anthracnose.<br>Phytopathology, 2017, 107, 1462-1467.                                                                                      | 1.1 | 41             |
| 32 | Analysis of the Fungal Diversity in Citrus Leaves with Greasy Spot Disease Symptoms. Microbial<br>Ecology, 2017, 73, 739-749.                                                                                                | 1.4 | 28             |
| 33 | Elicitation of resistance responses in grapefruit and lemon fruits treated with a pomegranate peel extract. Plant Pathology, 2017, 66, 633-640.                                                                              | 1.2 | 31             |
| 34 | A Metabarcoding Survey on the Fungal Microbiota Associated to the Olive Fruit Fly. Microbial<br>Ecology, 2017, 73, 677-684.                                                                                                  | 1.4 | 38             |
| 35 | Fungal Planet description sheets: 558–624. Persoonia: Molecular Phylogeny and Evolution of Fungi,<br>2017, 38, 240-384.                                                                                                      | 1.6 | 126            |
| 36 | <i>Nothophytophthora</i> gen. nov., a new sister genus of <i> Phytophthora</i> from natural and semi-natural ecosystems. Persoonia: Molecular Phylogeny and Evolution of Fungi, 2017, 39, 143-174.                           | 1.6 | 30             |

| #  | Article                                                                                                                                                                                   | IF                | CITATIONS      |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------|
| 37 | Multiple new cryptic pathogenic Phytophthora species from Fagaceae forests in Austria, Italy and<br>Portugal. IMA Fungus, 2017, 8, 219-244.                                               | 1.7               | 65             |
| 38 | First Report of <i>Sclerotinia sclerotiorum</i> Associated With Olive Fruit Rot in Italy. Plant Disease, 2017, 101, 1040-1040.                                                            | 0.7               | 3              |
| 39 | Two previously unknown Phytophthora species associated with brown rot of Pomelo (Citrus grandis)<br>fruits in Vietnam. PLoS ONE, 2017, 12, e0172085.                                      | 1.1               | 41             |
| 40 | Identification of Phytophthora species by a high resolution melting analysis: an innovative tool for rapid differentiation. Plant Protection Science, 2016, 52, 176-181.                  | 0.7               | 4              |
| 41 | Characterization of Citrus-Associated Alternaria Species in Mediterranean Areas. PLoS ONE, 2016, 11, e0163255.                                                                            | 1.1               | 39             |
| 42 | Spatial and compositional variation in the fungal communities of organic and conventionally grown apple fruit at the consumer point-of-purchase. Horticulture Research, 2016, 3, 16047.   | 2.9               | 138            |
| 43 | Postharvest fungal diseases of cactus pear fruit in southern Italy. Acta Horticulturae, 2016, , 215-218.                                                                                  | 0.1               | 4              |
| 44 | Metabarcoding Analysis of <i>Phytophthora</i> Diversity Using Genus-Specific Primers and 454<br>Pyrosequencing. Phytopathology, 2016, 106, 305-313.                                       | 1.1               | 51             |
| 45 | Genetic Analysis of <i>Phytophthora nicotianae</i> Populations from Different Hosts Using<br>Microsatellite Markers. Phytopathology, 2016, 106, 1006-1014.                                | 1.1               | 55             |
| 46 | Alternative management technologies for postharvest disease control: The journey from simplicity to complexity. Postharvest Biology and Technology, 2016, 122, 3-10.                      | 2.9               | 234            |
| 47 | Control of postharvest fungal rots on citrus fruit and sweet cherries using a pomegranate peel extract. Postharvest Biology and Technology, 2016, 114, 54-61.                             | 2.9               | 103            |
| 48 | Metagenomic Analysis of Fungal Diversity on Strawberry Plants and the Effect of Management<br>Practices on the Fungal Community Structure of Aerial Organs. PLoS ONE, 2016, 11, e0160470. | 1.1               | 76             |
| 49 | Chemical Characterization of Different Sumac and Pomegranate Extracts Effective against Botrytis cinerea Rots. Molecules, 2015, 20, 11941-11958.                                          | 1.7               | 59             |
| 50 | Metabarcoding Analysis of Fungal Diversity in the Phyllosphere and Carposphere of Olive (Olea) Tj ETQq0 0 0 rgB                                                                           | 3T /Overlo<br>1.1 | ck 10 Tf 50 22 |
| 51 | Identification and validation of polymorphic microsatellite loci for the analysis of Phytophthora nicotianae populations. Journal of Microbiological Methods, 2015, 110, 61-67.           | 0.7               | 14             |
| 52 | Dieback of <i>Pinus nigra</i> Seedlings Caused by a Strain of <i>Trichoderma viride</i> . Plant Disease, 2015, 99, 44-49.                                                                 | 0.7               | 35             |
| 53 | Molecular analysis of <i>Phytophthora</i> diversity in nurseryâ€grown ornamental and fruit plants.<br>Plant Pathology, 2015, 64, 1308-1319.                                               | 1.2               | 56             |
|    |                                                                                                                                                                                           |                   |                |

<sup>54</sup>Molecular analysis of the fungal microbiome associated with the olive fruit fly Bactrocera oleae.0.72054Fungal Ecology, 2015, 18, 67-74.0.720

| #  | Article                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | The Top 10 oomycete pathogens in molecular plant pathology. Molecular Plant Pathology, 2015, 16, 413-434.                                                                                              | 2.0 | 695       |
| 56 | Molecular Analysis of Colletotrichum Species in the Carposphere and Phyllosphere of Olive. PLoS ONE, 2014, 9, e114031.                                                                                 | 1.1 | 42        |
| 57 | Effectiveness of Phenolic Compounds against Citrus Green Mould. Molecules, 2014, 19, 12500-12508.                                                                                                      | 1.7 | 42        |
| 58 | Species of the <i>Colletotrichum gloeosporioides</i> and <i>C.Âboninense</i> complexes associated with olive anthracnose. Plant Pathology, 2014, 63, 437-446.                                          | 1.2 | 85        |
| 59 | Use of Quantitative <scp>PCR</scp> Detection Methods to Study Biocontrol Agents and<br>Phytopathogenic Fungi and Oomycetes in Environmental Samples. Journal of Phytopathology, 2014, 162,<br>1-13.    | 0.5 | 84        |
| 60 | Characterization of Basidiomycetes Associated with Wood Rot of Citrus in Southern Italy.<br>Phytopathology, 2014, 104, 851-858.                                                                        | 1.1 | 13        |
| 61 | Analyses of the Population Structure in a Global Collection of <i>Phytophthora nicotianae</i> Isolates Inferred from Mitochondrial and Nuclear DNA Sequences. Phytopathology, 2013, 103, 610-622.      | 1.1 | 35        |
| 62 | <i>Phytophthora</i> × <i>pelgrandis</i> Causes Root and Collar Rot of <i>Lavandula stoechas</i> in<br>Italy. Plant Disease, 2013, 97, 1091-1096.                                                       | 0.7 | 15        |
| 63 | A molecular method to assess Phytophthora diversity in environmental samples. Journal of<br>Microbiological Methods, 2012, 88, 356-368.                                                                | 0.7 | 73        |
| 64 | Early detection of Botrytis cinerea latent infections as a tool to improve postharvest quality of table grapes. Postharvest Biology and Technology, 2012, 68, 64-71.                                   | 2.9 | 72        |
| 65 | Genetic characterization of Phytophthora nicotianae by the analysis of polymorphic regions of the mitochondrial DNA. Fungal Biology, 2011, 115, 432-442.                                               | 1.1 | 30        |
| 66 | CHARACTERIZATION OF DIFFERENTIALLY EXPRESSED TRANSCRIPTS IN QUERCETIN-TREATED APPLES BY SUPPRESSION SUBTRACTIVE HYBRIDIZATION. Acta Horticulturae, 2010, , 1691-1695.                                  | 0.1 | 1         |
| 67 | Characterization of genes associated with induced resistance against Penicillium expansum in apple fruit treated with quercetin. Postharvest Biology and Technology, 2010, 56, 1-11.                   | 2.9 | 61        |
| 68 | <i>Fomitopsis</i> sp. causing brown rot in wood of living citrus trees reported for first time in southern Italy. New Disease Reports, 2010, 22, 13-13.                                                | 0.4 | 5         |
| 69 | Effect of quercetin and umbelliferone on the transcript level of Penicillium expansum genes involved<br>in patulin biosynthesis. European Journal of Plant Pathology, 2009, 125, 223-233.              | 0.8 | 47        |
| 70 | Control of Penicillium expansum and patulin accumulation on apples by quercetin and umbelliferone.<br>European Food Research and Technology, 2009, 228, 381-389.                                       | 1.6 | 78        |
| 71 | Development and application of a PCRâ€based â€~molecular tool box' for the identification of<br><i>Phytophthora</i> species damaging forests and natural ecosystems. Plant Pathology, 2008, 57, 64-75. | 1.2 | 49        |
| 72 | Use of genome sequence data in the design and testing of SSR markers for Phytophthora species. BMC<br>Genomics, 2008, 9, 620.                                                                          | 1.2 | 29        |

| #  | Article                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Integrated Management of Rosellinia nEcatrix Root Rot on Fruit Tree Crops. , 2008, , 137-158.                                                                                                                                          |     | 7         |
| 74 | Real-time PCR identification and detection of Fuscoporia torulosa in Quercus ilex. Plant Pathology, 2007, 57, 070924013950002-???.                                                                                                     | 1.2 | 5         |
| 75 | Comparison of conventional and molecular methods for the detection of Rosellinia necatrix in avocado orchards in southern Spain. Plant Pathology, 2007, 56, 251-256.                                                                   | 1.2 | 19        |
| 76 | Real-time Scorpion-PCR detection and quantification of Erwinia amylovora on pear leaves and flowers. European Journal of Plant Pathology, 2007, 118, 11-22.                                                                            | 0.8 | 19        |
| 77 | Viroid, phytoplasma, and fungal diseases of stone fruit in eastern Anatolia, Turkey. New Zealand<br>Journal of Crop and Horticultural Science, 2006, 34, 1-6.                                                                          | 0.7 | 5         |
| 78 | Assessing the potential of regions of the nuclear and mitochondrial genome to develop a "molecular<br>tool box―for the detection and characterization of Phytophthora species. Journal of<br>Microbiological Methods, 2006, 67, 70-85. | 0.7 | 94        |
| 79 | Detection and quantification ofPhytophthora ramorum,P.Âkernoviae,P.ÂcitricolaandP.Âquercinain symptomatic leaves by multiplex real-time PCR. Molecular Plant Pathology, 2006, 7, 365-379.                                              | 2.0 | 140       |
| 80 | Control of table grape storage rots by pre-harvest applications of salts. Postharvest Biology and<br>Technology, 2006, 42, 142-149.                                                                                                    | 2.9 | 94        |
| 81 | BIOCONTROL ACTIVITY OF BIO-COAT AND BIOCURE AGAINST POSTHARVEST ROTS OF TABLE GRAPES AND SWEET CHERRIES. Acta Horticulturae, 2005, , 2115-2120.                                                                                        | 0.1 | 5         |
| 82 | Control of postharvest rots of sweet cherries by pre- and postharvest applications of Aureobasidium pullulans in combination with calcium chloride or sodium bicarbonate. Postharvest Biology and Technology, 2005, 36, 245-252.       | 2.9 | 105       |
| 83 | INTEGRATED CONTROL OF SWEET CHERRY POSTHARVEST ROTS BY AUREOBASIDIUM PULLULANS IN COMBINATION WITH CALCIUM CHLORIDE OR SODIUM BICARBONATE. Acta Horticulturae, 2005, , 1985-1990.                                                      | 0.1 | 1         |
| 84 | Real-time quantitative PCR: a new technology to detect and study phytopathogenic and antagonistic fungi. European Journal of Plant Pathology, 2004, 110, 893-908.                                                                      | 0.8 | 278       |
| 85 | Real-time detection of Phytophthora nicotianae and P. citrophthorain citrus roots and soil. European<br>Journal of Plant Pathology, 2004, 110, 833-843.                                                                                | 0.8 | 71        |
| 86 | Control of postharvest rots of sweet cherries and table grapes with endophytic isolates of<br>Aureobasidium pullulans. Postharvest Biology and Technology, 2003, 30, 209-220.                                                          | 2.9 | 146       |
| 87 | Molecular Detection of Strain L47 of Aureobasidium pullulans, a Biocontrol Agent of Postharvest<br>Diseases. Plant Disease, 2002, 86, 54-60.                                                                                           | 0.7 | 75        |
| 88 | Identification and Detection of Rosellinia Necatrix by Conventional and Real-time Scorpion-PCR.<br>European Journal of Plant Pathology, 2002, 108, 355-366.                                                                            | 0.8 | 84        |
| 89 | Detection of Phytophthora nicotianae and P. citrophthora in Citrus Roots and Soils by Nested PCR.<br>European Journal of Plant Pathology, 2002, 108, 855-868.                                                                          | 0.8 | 75        |
| 90 | Specific identification of Aureobasidium pullulans strain L47 using Scorpion PCR. EPPO Bulletin, 2000, 30, 559-562.                                                                                                                    | 0.6 | 2         |

| #  | Article                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Biological control of Botrytis, Aspergillus and Rhizopus rots on table and wine grapes in Israel.<br>Postharvest Biology and Technology, 2000, 20, 115-124.    | 2.9 | 98        |
| 92 | Molecular Approaches to Assist the Screening and Monitoring of Postharvest Biocontrol Yeasts.<br>European Journal of Plant Pathology, 2000, 106, 681-691.      | 0.8 | 37        |
| 93 | Genetic diversity and biocontrol activity of Aureobasidium pullulans isolates against postharvest rots. Postharvest Biology and Technology, 1999, 17, 189-199. | 2.9 | 113       |