Jesper Nylandsted

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/705477/publications.pdf

Version: 2024-02-01

64 papers

5,148 citations

34 h-index 60 g-index

70 all docs

70 docs citations

70 times ranked 8607 citing authors

#	Article	IF	CITATIONS
1	Filopodia rotate and coil by actively generating twist in their actin shaft. Nature Communications, 2022, 13, 1636.	12.8	21
2	Thermoplasmonic nano-rupture of cells reveals annexin V function in plasma membrane repair. Nanoscale, 2022, 14, 7778-7787.	5.6	5
3	Annexin A4 trimers are recruited by high membrane curvatures in giant plasma membrane vesicles. Soft Matter, 2021, 17, 308-318.	2.7	28
4	Timescale of hole closure during plasma membrane repair estimated by calcium imaging and numerical modeling. Scientific Reports, $2021, 11, 4226$.	3.3	9
5	Investigating Plasma-Membrane Repair Employing Thermoplasmonics. Biophysical Journal, 2021, 120, 45a.	0.5	O
6	Annexins A1 and A2 Accumulate and Are Immobilized at Cross-Linked Membrane–Membrane Interfaces. Biochemistry, 2021, 60, 1248-1259.	2.5	12
7	Restructuring of the plasma membrane upon damage by LC3-associated macropinocytosis. Science Advances, 2021, 7, .	10.3	32
8	CHIP-dependent regulation of the actin cytoskeleton is linked to neuronal cell membrane integrity. IScience, 2021, 24, 102878.	4.1	6
9	Phenothiazines alter plasma membrane properties andÂsensitize cancer cells to injury by inhibiting annexin-mediated repair. Journal of Biological Chemistry, 2021, 297, 101012.	3.4	16
10	Short-term transcriptomic response to plasma membrane injury. Scientific Reports, 2021, 11, 19141.	3.3	4
11	Simultaneous membrane binding of Annexin A4 and A5 suppresses 2D lattice formation while maintaining curvature induction. Journal of Colloid and Interface Science, 2021, 600, 854-864.	9.4	9
12	Plasma membrane integrity in health and disease: significance and therapeutic potential. Cell Discovery, 2021, 7, 4.	6.7	92
13	Actin Cytoskeletal Dynamics in Single-Cell Wound Repair. International Journal of Molecular Sciences, 2021, 22, 10886.	4.1	14
14	Interdisciplinary Synergy to Reveal Mechanisms of Annexin-Mediated Plasma Membrane Shaping and Repair. Cells, 2020, 9, 1029.	4.1	28
15	Annexins Bend Wound Edges during Plasma Membrane Repair. Current Medicinal Chemistry, 2020, 27, 3600-3610.	2.4	11
16	Annexins: players of single cell wound healing and regeneration. Communicative and Integrative Biology, 2019, 12, 162-165.	1.4	18
17	Curvature- and Phase-Induced Protein Sorting Quantified in Transfected Cell-Derived Giant Vesicles. ACS Nano, 2019, 13, 6689-6701.	14.6	37
18	Annexin A7 is required for ESCRT III-mediated plasma membrane repair. Scientific Reports, 2019, 9, 6726.	3.3	73

#	Article	IF	Citations
19	Calcium electroporation and electrochemotherapy for cancer treatment: Importance of cell membrane composition investigated by lipidomics, calorimetry and in vitro efficacy. Scientific Reports, 2019, 9, 4758.	3.3	56
20	Effect of local thermoplasmonic heating on biological membranes. , 2019, , .		2
21	Using Liprotides to Deliver Cholesterol to the Plasma Membrane. Journal of Membrane Biology, 2018, 251, 581-592.	2.1	4
22	Annexins induce curvature on free-edge membranes displaying distinct morphologies. Scientific Reports, 2018, 8, 10309.	3. 3	80
23	Quantitative Profiling of Lysosomal Lipidome by Shotgun Lipidomics. Methods in Molecular Biology, 2017, 1594, 19-34.	0.9	15
24	Annexin A4 and A6 induce membrane curvature and constriction during cell membrane repair. Nature Communications, 2017, 8, 1623.	12.8	128
25	Liprotides kill cancer cells by disrupting the plasma membrane. Scientific Reports, 2017, 7, 15129.	3.3	15
26	Dihydroceramide accumulation mediates cytotoxic autophagy of cancer cells via autolysosome destabilization. Autophagy, 2016, 12, 2213-2229.	9.1	118
27	Repurposing Cationic Amphiphilic Antihistamines for Cancer Treatment. EBioMedicine, 2016, 9, 130-139.	6.1	92
28	Annexins in plasma membrane repair. Biological Chemistry, 2016, 397, 961-969.	2.5	75
29	S100 and annexin proteins identify cell membrane damage as the Achilles heel of metastatic cancer cells. Cell Cycle, 2015, 14, 502-509.	2.6	54
30	Methods for the quantification of lysosomal membrane permeabilization: A hallmark of lysosomal cell death. Methods in Cell Biology, 2015, 126, 261-285.	1.1	66
31	A Method to Monitor Lysosomal Membrane Permeabilization by Immunocytochemistry. Cold Spring Harbor Protocols, 2015, 2015, pdb.prot086181.	0.3	7
32	Quantification of Lysosomal Membrane Permeabilization by Cytosolic Cathepsin and \hat{l}^2 - $\langle i \rangle N < /i \rangle$ -Acetyl-Glucosaminidase Activity Measurements. Cold Spring Harbor Protocols, 2015, 2015, pdb.prot086165.	0.3	12
33	Methods for Probing Lysosomal Membrane Permeabilization. Cold Spring Harbor Protocols, 2015, 2015, pdb.top070367.	0.3	6
34	Annexins are instrumental for efficient plasma membrane repair in cancer cells. Seminars in Cell and Developmental Biology, 2015, 45, 32-38.	5.0	75
35	Visualizing Lysosomal Membrane Permeabilization by Fluorescent Dextran Release: Figure 1 Cold Spring Harbor Protocols, 2015, 2015, pdb.prot086173.	0.3	12
36	S100A11 is required for efficient plasma membrane repair and survival of invasive cancer cells. Nature Communications, 2014, 5, 3795.	12.8	175

#	Article	IF	Citations
37	Transformation-Associated Changes in Sphingolipid Metabolism Sensitize Cells to Lysosomal Cell Death Induced by Inhibitors of Acid Sphingomyelinase. Cancer Cell, 2013, 24, 379-393.	16.8	281
38	Sunitinib and SU11652 Inhibit Acid Sphingomyelinase, Destabilize Lysosomes, and Inhibit Multidrug Resistance. Molecular Cancer Therapeutics, 2013, 12, 2018-2030.	4.1	55
39	ErbB2-Driven Breast Cancer Cell Invasion Depends on a Complex Signaling Network Activating Myeloid Zinc Finger-1-Dependent Cathepsin B Expression. Molecular Cell, 2012, 45, 764-776.	9.7	112
40	Identification of Cytoskeleton-Associated Proteins Essential for Lysosomal Stability and Survival of Human Cancer Cells. PLoS ONE, 2012, 7, e45381.	2.5	63
41	ErbB2â€associated changes in the lysosomal proteome. Proteomics, 2011, 11, 2830-2838.	2.2	23
42	A comprehensive siRNA screen for kinases that suppress macroautophagy in optimal growth conditions. Autophagy, 2011, 7, 892-903.	9.1	76
43	NBCn1 and NHE1 expression and activity in î"NErbB2 receptor-expressing MCF-7 breast cancer cells: Contributions to pHi regulation and chemotherapy resistance. Experimental Cell Research, 2010, 316, 2538-2553.	2.6	111
44	Hsp70 stabilizes lysosomes and reverts Niemann–Pick disease-associated lysosomal pathology. Nature, 2010, 463, 549-553.	27.8	425
45	BAMLET Activates a Lysosomal Cell Death Program in Cancer Cells. Molecular Cancer Therapeutics, 2010, 9, 24-32.	4.1	122
46	Depletion of Kinesin 5B Affects Lysosomal Distribution and Stability and Induces Peri-Nuclear Accumulation of Autophagosomes in Cancer Cells. PLoS ONE, 2009, 4, e4424.	2.5	98
47	Extracellular heat shock protein 70: A potential prognostic marker for chronic myeloid leukemia. Leukemia Research, 2009, 33, 205-206.	0.8	6
48	Anti-cancer agent siramesine is a lysosomotropic detergent that induces cytoprotective autophagosome accumulation. Autophagy, 2008, 4, 487-499.	9.1	140
49	54 Anti-Cancer Agent Siramesine Induces Selective Cathepsin Induced Cell Death. Apmis, 2008, 116, 439-439.	2.0	0
50	Vincristine Induces Dramatic Lysosomal Changes and Sensitizes Cancer Cells to Lysosome-Destabilizing Siramesine. Cancer Research, 2007, 67, 2217-2225.	0.9	187
51	The Na ⁺ /H ⁺ Exchanger, NHE1, Differentially Regulates Mitogen-Activated Protein Kinase Subfamilies after Osmotic Shrinkage in Ehrlich Lettre Ascites Cells. Cellular Physiology and Biochemistry, 2007, 20, 735-750.	1.6	39
52	Apoptosome-Independent Activation of the Lysosomal Cell Death Pathway by Caspase-9. Molecular and Cellular Biology, 2006, 26, 7880-7891.	2.3	94
53	Members of the heat-shock protein 70 family promote cancer cell growth by distinct mechanisms. Genes and Development, 2005, 19, 570-582.	5.9	354
54	Heat Shock Protein 70 Promotes Cancer Cell Viability by Safeguarding Lysosomal Integrity. Cell Cycle, 2004, 3, 1484-1485.	2.6	109

#	Article	IF	Citations
55	Inhibition of Chk1 by CEP-3891 Accelerates Mitotic Nuclear Fragmentation in Response to Ionizing Radiation. Cancer Research, 2004, 64, 9035-9040.	0.9	95
56	Heat Shock Protein 70 Promotes Cell Survival by Inhibiting Lysosomal Membrane Permeabilization. Journal of Experimental Medicine, 2004, 200, 425-435.	8.5	495
57	Heat shock protein 70 inhibits shrinkage-induced programmed cell death via mechanisms independent of effects on cell volume-regulatory membrane transport proteins. Pflugers Archiv European Journal of Physiology, 2004, 449, 175-185.	2.8	29
58	Lack of neuroprotection by heat shock protein 70 overexpression in a mouse model of global cerebral ischemia. Experimental Brain Research, 2004, 154, 442-449.	1.5	35
59	Overexpression of heat shock protein 70 in R6/2 Huntington's disease mice has only modest effects on disease progression. Brain Research, 2003, 970, 47-57.	2.2	117
60	Eradication of glioblastoma, and breast and colon carcinoma xenografts by Hsp70 depletion. Cancer Research, 2002, 62, 7139-42.	0.9	118
61	Selective depletion of heat shock protein 70 (Hsp70) activates a tumor-specific death program that is independent of caspases and bypasses Bcl-2. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 7871-7876.	7.1	372
62	Heat Shock Protein 70 Is Required for the Survival of Cancer Cells. Annals of the New York Academy of Sciences, 2000, 926, 122-125.	3.8	174
63	Expression of a p16INK4a-specific ribozyme downmodulates p16INK4aabundance and accelerates cell proliferation. FEBS Letters, 1998, 436, 41-45.	2.8	8
64	Dominant Steady State Proteome Changes in the Absence of CHIP Highlight a Role in Neuronal Cell Membrane Integrity Linked to the Actin Cytoskeleton. SSRN Electronic Journal, 0, , .	0.4	0