
Mamoru Harada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7054767/publications.pdf Version: 2024-02-01

Μαμορίι Ηλρασα

#	Article	IF	CITATIONS
1	T-cell responses and combined immunotherapy against human carbonic anhydrase 9-expressing mouse renal cell carcinoma. Cancer Immunology, Immunotherapy, 2022, 71, 339-352.	2.0	2
2	Protective role of cytoplasmic p21Cip1/Waf1 in apoptosis of CDK4/6 inhibitorâ€induced senescence in breast cancer cells. Cancer Medicine, 2021, 10, 8988-8999.	1.3	8
3	Anticancer Activity of ZnO Nanoparticles against Human Small-Cell Lung Cancer in an Orthotopic Mouse Model. Molecular Cancer Therapeutics, 2020, 19, 502-512.	1.9	70
4	Local injection of CCL19-expressing mesenchymal stem cells augments the therapeutic efficacy of anti-PD-L1 antibody by promoting infiltration of immune cells. , 2020, 8, e000582.		23
5	Immunogenic chemotherapy in two mouse colon cancer models. Cancer Science, 2020, 111, 3527-3539.	1.7	18
6	Pemetrexed sensitizes human lung cancer cells to cytotoxic immune cells. Cancer Science, 2020, 111, 1910-1920.	1.7	21
7	Supplementation of <scp>l</scp> â€arginine boosts the therapeutic efficacy of anticancer chemoimmunotherapy. Cancer Science, 2020, 111, 2248-2258.	1.7	31
8	PD-L1 expression in regional lymph nodes and predictable roles in anti-cancer immune responses. Journal of Clinical and Experimental Hematopathology: JCEH, 2020, 60, 113-116.	0.3	7
9	Different sensitivities of senescent breast cancer cells to immune cellâ€mediated cytotoxicity. Cancer Science, 2019, 110, 2690-2699.	1.7	24
10	Potential mechanisms of spontaneous regression in patients with B-cell lymphoma; the significance of co-stimulatory molecules in lymphoma cells. Journal of Clinical and Experimental Hematopathology: JCEH, 2019, 59, 207-210.	0.3	2
11	Chloroquine augments TRAIL-induced apoptosis and induces G2/M phase arrest in human pancreatic cancer cells. PLoS ONE, 2018, 13, e0193990.	1.1	32
12	Novel drug-resistance mechanisms of pemetrexed-treated non-small cell lung cancer. Oncotarget, 2018, 9, 16807-16821.	0.8	24
13	Hypoxia-inducing factor (HIF)-1α-derived peptide capable of inducing cancer-reactive cytotoxic T lymphocytes from HLA-A24+ patients with renal cell carcinoma. International Immunopharmacology, 2017, 44, 197-202.	1.7	9
14	Contrasting effects of cyclophosphamide on antiâ€ <scp>CTL</scp> â€associated protein 4 blockade therapy in two mouse tumor models. Cancer Science, 2017, 108, 1974-1984.	1.7	35
15	Age-associated impairment of antitumor immunity in carcinoma-bearing mice and restoration by oral administration of Lentinula edodes mycelia extract. Cancer Immunology, Immunotherapy, 2016, 65, 961-972.	2.0	16
16	Identification of Programmed Death Ligand 1–derived Peptides Capable of Inducing Cancer-reactive Cytotoxic T Lymphocytes From HLA-A24+ Patients With Renal Cell Carcinoma. Journal of Immunotherapy, 2015, 38, 285-291.	1.2	31
17	Bcl-xL inhibition by molecular-targeting drugs sensitizes human pancreatic cancer cells to TRAIL. Oncotarget, 2015, 6, 41902-41915.	0.8	25
18	Intermittent chemotherapy can retain the therapeutic potential of anti―CD 137 antibody during the late tumorâ€bearing state. Cancer Science, 2015, 106, 9-17.	1.7	12

Mamoru Harada

#	Article	lF	CITATIONS
19	The Roles of ROS and Caspases in TRAIL-Induced Apoptosis and Necroptosis in Human Pancreatic Cancer Cells. PLoS ONE, 2015, 10, e0127386.	1.1	75
20	Transfection of poly(I:C) can induce reactive oxygen species-triggered apoptosis and interferon-β-mediated growth arrest in human renal cell carcinoma cells via innate adjuvant receptors and the 2-5A system. Molecular Cancer, 2014, 13, 217.	7.9	29
21	Identification of erythropoietin receptor-derived peptides having the potential to induce cancer-reactive cytotoxic T lymphocytes from HLA-A24+ patients with renal cell carcinoma. International Immunopharmacology, 2014, 20, 59-65.	1.7	7
22	Effects of Metronomic Chemotherapy on Immunity. , 2014, , 39-51.		1
23	Bcl-2 family inhibition sensitizes human prostate cancer cells to docetaxel and promotes unexpected apoptosis under caspase-9 inhibition. Oncotarget, 2014, 5, 11399-11412.	0.8	61
24	Metronomic chemotherapy with low-dose cyclophosphamide plus gemcitabine can induce anti-tumor T cell immunity in vivo. Cancer Immunology, Immunotherapy, 2013, 62, 383-391.	2.0	100
25	The HSP70 and Autophagy Inhibitor Pifithrin-μ Enhances the Antitumor Effects of TRAIL on Human Pancreatic Cancer. Molecular Cancer Therapeutics, 2013, 12, 341-351.	1.9	41
26	Pifithrin-μ, an Inhibitor of Heat-Shock Protein 70, Can Increase the Antitumor Effects of Hyperthermia Against Human Prostate Cancer Cells. PLoS ONE, 2013, 8, e78772.	1.1	48
27	Combining a peptide vaccine with oral ingestion of Lentinula edodes mycelia extract enhances anti-tumor activity in B16 melanoma-bearing mice. Cancer Immunology, Immunotherapy, 2012, 61, 2143-2152.	2.0	18
28	Roles of the PI3K/Akt pathway and autophagy in TLR3 signaling-induced apoptosis and growth arrest of human prostate cancer cells. Cancer Immunology, Immunotherapy, 2012, 61, 667-676.	2.0	80
29	Antitumor effects of cytoplasmic delivery of an innate adjuvant receptor ligand, poly(I:C), on human breast cancer. Breast Cancer Research and Treatment, 2012, 134, 89-100.	1.1	41
30	Oral ingestion of Lentinula edodes mycelia extract can restore the antitumor T cell response of mice inoculated with colon-26 cells into the subserosal space of the cecum. Oncology Reports, 2011, 27, 325-32.	1.2	12
31	Oral ingestion of <i>Lentinula edodes</i> mycelia extract inhibits B16 melanoma growth via mitigation of regulatory T cellâ€mediated immunosuppression. Cancer Science, 2011, 102, 516-521.	1.7	27
32	Immunogenic chemotherapy with cyclophosphamide and doxorubicin against established murine carcinoma. Cancer Immunology, Immunotherapy, 2010, 59, 769-777.	2.0	50
33	HLA-G as a target molecule in specific immunotherapy against renal cell carcinoma. Oncology Reports, 2007, 18, 1463-8.	1.2	16
34	ANTITUMOR ACTIVITY OF INTERLEUKIN-12 AGAINST MURINE BLADDER CANCER. Journal of Urology, 2000, 163, 1549-1552.	0.2	17
35	A Histochemical Study on Uptake of Serum Low density Lipoprotein into Arterial Wall. The Journal of Japan Atherosclerosis Society, 1978, 6, 299-304.	0.0	0
36	A In-vitro Study on the Influences of Various Humoral Factors to the Serum Lipoprotein Uptake into Arterial Wall. The Journal of Japan Atherosclerosis Society, 1977, 5, 211-216.	0.0	0

#	Article	IF	CITATIONS
37	Special reference with uptake of serum lipoproteins into arterial wall. The Journal of Japan Atherosclerosis Society, 1976, 4, 45-50.	0.0	0