LjubiÅ;a Stanković

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7054703/publications.pdf

Version: 2024-02-01

241 papers

6,422 citations

71061 41 h-index 95218 68 g-index

243 all docs 243 docs citations

times ranked

243

2309 citing authors

#	Article	IF	CITATIONS
1	On the sparsity bound for the existence of a unique solution in compressive sensing by the Gershgorin theorem. Signal Processing, 2022, 190, 108316.	2.1	4
2	Audio Signal Denoising Based on Laplacian Filter and Sparse Signal Reconstruction., 2022,,.		1
3	Low-Complexity Attention Modelling via Graph Tensor Networks. , 2022, , .		1
4	Construction of unit norm tight frames inspired by the Paulsen problem. , 2022, , 103590.		0
5	Dynamic Portfolio Cuts: A Spectral Approach to Graph-Theoretic Diversification., 2022,,.		3
6	A probe-feature for specific emitter identification using axiom-based grad-CAM. Signal Processing, 2022, 201, 108685.	2.1	6
7	Reconstruction Error in Nonuniformly Sampled Approximately Sparse Signals. IEEE Geoscience and Remote Sensing Letters, 2021, 18, 28-32.	1.4	6
8	The DCT domain sparsity-assisted detection and recovery of impulsively disturbed samples. Multimedia Tools and Applications, 2021, 80, 6221-6234.	2.6	4
9	Improved Coherence Index-Based Bound in Compressive Sensing. IEEE Signal Processing Letters, 2021, 28, 1110-1114.	2.1	5
10	Rule-Based EEG Classifier Utilizing Local Entropy of Time–Frequency Distributions. Mathematics, 2021, 9, 451.	1.1	7
11	Comparison of Two Image Denoising Approaches Based on Compressive Sensing Principles. , 2021, , .		3
12	RANSAC-Based Signal Denoising Using Compressive Sensing. Circuits, Systems, and Signal Processing, 2021, 40, 3907-3928.	1.2	9
13	Self-Matching CAM: A Novel Accurate Visual Explanation of CNNs for SAR Image Interpretation. Remote Sensing, 2021, 13, 1772.	1.8	31
14	From Time–Frequency to Vertex–Frequency and Back. Mathematics, 2021, 9, 1407.	1.1	2
15	Nonstationary Portfolios: Diversification in the Spectral Domain. , 2021, , .		3
16	SC-SM CAM: An Efficient Visual Interpretation of CNN for SAR Images Target Recognition. Remote Sensing, 2021, 13, 4139.	1.8	6
17	On Optimal Parameters for ICI-Based Adaptive Filtering Applied to the GWs in High Noise. , 2021, , .		2
18	Laplacian Filter in Reconstruction of Images using Gradient-Based Algorithm. , 2021, , .		3

#	Article	IF	Citations
19	Inverse Radon Transform in Radar Signal Parameter Estimation – an Overview. , 2021, , .		O
20	Analysis of Cryptography Algorithms Implemented in Android Mobile Application. Information Technology and Control, 2021, 50, 786-807.	1.1	2
21	On the decomposition of multichannel nonstationary multicomponent signals. Signal Processing, 2020, 167, 107261.	2.1	24
22	Quantization Effect in Nonuniform Nonsparse Signal Reconstruction. , 2020, , .		0
23	Comparison of Entropy and Dictionary Based Text Compression in English, German, French, Italian, Czech, Hungarian, Finnish, and Croatian. Mathematics, 2020, 8, 1059.	1.1	9
24	On Polynomial Approximations of Spectral Windows in Vertex-Frequency Representations. , 2020, , .		1
25	Vertex-frequency graph signal processing: A comprehensive review. , 2020, 107, 102802.		20
26	Bit-depth quantization and reconstruction error in digital images. Signal, Image and Video Processing, 2020, 14, 1545-1553.	1.7	4
27	The Support Uncertainty Principle and the Graph Rihaczek Distribution: Revisited and Improved. IEEE Signal Processing Letters, 2020, 27, 1030-1034.	2.1	5
28	Quantization in Compressive Sensing: A Signal Processing Approach. IEEE Access, 2020, 8, 50611-50625.	2.6	10
29	Portfolio Cuts: A Graph-Theoretic Framework to Diversification. , 2020, , .		1
30	Demystifying the Coherence Index in Compressive Sensing [Lecture Notes]. IEEE Signal Processing Magazine, 2020, 37, 152-162.	4.6	12
31	Decomposition of multichannel multicomponent nonstationary signals by combining the eigenvectors of autocorrelation matrix using genetic algorithm., 2020, 102, 102738.		7
32	Data Analytics on Graphs Part I: Graphs and Spectra on Graphs. Foundations and Trends in Machine Learning, 2020, 13, 1-157.	46.6	25
33	Data Analytics on Graphs Part II: Signals on Graphs. Foundations and Trends in Machine Learning, 2020, 13, 158-331.	46.6	21
34	Data Analytics on Graphs Part III: Machine Learning on Graphs, from Graph Topology to Applications. Foundations and Trends in Machine Learning, 2020, 13, 332-530.	46.6	32
35	A Tutorial on Sparse Signal Reconstruction and Its Applications in Signal Processing. Circuits, Systems, and Signal Processing, 2019, 38, 1206-1263.	1.2	48
36	Local Smoothness of Graph Signals. Mathematical Problems in Engineering, 2019, 2019, 1-14.	0.6	14

#	Article	IF	Citations
37	Understanding the Basis of Graph Signal Processing via an Intuitive Example-Driven Approach [Lecture Notes]. IEEE Signal Processing Magazine, 2019, 36, 133-145.	4.6	53
38	On the Quantization and the Probability of Misdetection in Compressive Sensing. , 2019, , .		4
39	Sparsity-Driven Impulsive Noise Removal: A Discrete Hermite Transform Case Study., 2019,,.		1
40	A p-Laplacian Inspired Method for Graph Cut. , 2019, , .		2
41	Time-Varying Cross-Range in Wideband Sonar Imaging. , 2019, , .		0
42	Decomposition of Two-Component Multivariate Signals with Overlapped Domains of Support. , 2019, , .		2
43	Introduction to Graph Signal Processing. Signals and Communication Technology, 2019, , 3-108.	0.4	28
44	Compressive Sensing Inspired Multivariate Median. Circuits, Systems, and Signal Processing, 2019, 38, 2369-2379.	1.2	1
45	Analysis of noise in complex-valued binary and bipolar sigmoid compressive sensing. Telfor Journal, 2019, 11, 35-40.	0.7	2
46	Vertex-Frequency Energy Distributions. IEEE Signal Processing Letters, 2018, 25, 358-362.	2.1	13
47	Analysis of the Reconstruction of Sparse Signals in the DCT Domain Applied to Audio Signals. IEEE/ACM Transactions on Audio Speech and Language Processing, 2018, 26, 1220-1235.	4.0	30
48	Time-frequency decomposition of multivariate multicomponent signals. Signal Processing, 2018, 142, 468-479.	2.1	54
49	Complex-Valued Binary Compressive Sensing. , 2018, , .		6
50	Analysis of off-grid effects in wideband sonar images using compressive sensing., 2018,,.		3
51	Reconstruction of Missing Samples in LFM Signals Using the Genetic Algorithm. , 2018, , .		0
52	Error in the Reconstruction of Nonsparse Images. Mathematical Problems in Engineering, 2018, 2018, 1-10.	0.6	8
53	Reduced Interference Vertex-Frequency Distributions. IEEE Signal Processing Letters, 2018, 25, 1393-1397.	2.1	9
54	Additive noise influence on the bivariate two-component signal decomposition. , 2018, , .		3

#	Article	IF	CITATIONS
55	Micro-Doppler removal in radar imaging in the case of non-compensated rigid body acceleration. , 2018, , .		2
56	Reconstruction of Sparse Signals in Impulsive Disturbance Environments. Circuits, Systems, and Signal Processing, 2017, 36, 767-794.	1.2	17
57	On the fixed-point rounding in the DFT. , 2017, , .		1
58	A resistive circuits analysis using graph spectral decomposition. , 2017, , .		1
59	Sparse signal reconstruction based on random search procedure. , 2017, , .		0
60	Vertex-Frequency Analysis: A Way to Localize Graph Spectral Components [Lecture Notes]. IEEE Signal Processing Magazine, 2017, 34, 176-182.	4.6	46
61	Polynomial Fourier domain as a domain of signal sparsity. Signal Processing, 2017, 130, 243-253.	2.1	28
62	Combination of gradient based and single iteration reconstruction algorithms for sparse signals. , 2017, , .		3
63	Two-component bivariate signal decomposition based on time-frequency analysis., 2017,,.		4
64	Windowing methods for graph signal localization., 2017,,.		0
65	On the Errors in Randomly Sampled Nonsparse Signals Reconstructed With a Sparsity Assumption. IEEE Geoscience and Remote Sensing Letters, 2017, 14, 2453-2456.	1.4	13
66	On a Gradient-Based Algorithm for Sparse Signal Reconstruction in the Signal/Measurements Domain. Mathematical Problems in Engineering, 2016, 2016, 1-11.	0.6	18
67	Sample selection strategy in DFT based compressive sensing. , 2016, , .		0
68	Nonsparsity influence on the ISAR recovery from reduced data [Correspondence]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52, 3065-3070.	2.6	13
69	Comparison of a gradient-based and LASSO (ISTA) algorithm for sparse signal reconstruction. , 2016, , .		4
70	Convexity of the \hat{a} , "1-norm based sparsity measure with respect to the missing samples as variables., 2016,		3
71	On the STFT Inversion Redundancy. IEEE Transactions on Circuits and Systems II: Express Briefs, 2016, 63, 284-288.	2.2	8
72	Compressive Sensing Approach in the Hermite Transform Domain. Mathematical Problems in Engineering, 2015, 2015, 1-9.	0.6	14

#	Article	IF	CITATIONS
73	On the Uniqueness of the Sparse Signals Reconstruction Based on the Missing Samples Variation Analysis. Mathematical Problems in Engineering, 2015, 2015, 1-14.	0.6	14
74	Statistical performance analyzer for compressive sensing gradient algorithm. , 2015, , .		0
75	Separation and reconstruction of the rigid body and microâ \in Doppler signal in ISAR part I â \in " theory. IET Radar, Sonar and Navigation, 2015, 9, 1147-1154.	0.9	21
76	Separation and reconstruction of the rigid body and microâ \in Doppler signal in ISAR part II â \in " statistical analysis. IET Radar, Sonar and Navigation, 2015, 9, 1155-1161.	0.9	12
77	Current Research in Microâ€Doppler: Editorial for the Special Issue on Microâ€Doppler. IET Radar, Sonar and Navigation, 2015, 9, 1137-1139.	0.9	4
78	Gradient algorithm based ISAR image reconstruction from the incomplete dataset. , 2015, , .		4
79	ISAR image analysis and recovery with unavailable or heavily corrupted data. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51, 2093-2106.	2.6	37
80	Inverse radon transform–based micro-doppler analysis from a reduced set of observations. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51, 1155-1169.	2.6	60
81	Synchrosqueezing-based time-frequency analysis of multivariate data. Signal Processing, 2015, 106, 331-341.	2.1	116
82	Comparison of the L1-magic and the gradient algorithm for sparse signals reconstruction. , 2014, , .		5
83	Relationship between the robust statistics theory and sparse compressive sensed signals reconstruction. IET Signal Processing, 2014, 8, 223-229.	0.9	39
84	Influence of yeast and nutrients on quality of apricot brandy. Journal of the Serbian Chemical Society, 2014, 79, 1223-1234.	0.4	9
85	Adaptive gradient based algorithm for complex sparse signal reconstruction. , 2014, , .		6
86	Quasiâ€maximumâ€likelihood estimator of polynomial phase signals. IET Signal Processing, 2014, 8, 347-359.	0.9	67
87	An automated signal reconstruction method based on analysis of compressive sensed signals in noisy environment. Signal Processing, 2014, 104, 43-50.	2.1	85
88	From the STFT to the Wigner Distribution [Lecture Notes]. IEEE Signal Processing Magazine, 2014, 31, 163-174.	4.6	58
89	XWD-algorithm for the instantaneous frequency estimation revisited: Statistical analysis. Signal Processing, 2014, 94, 642-649.	2.1	10
90	Non-Stationary Signal Analysis Time-Frequency Approach. Academic Press Library in Signal Processing, 2014, 3, 27-142.	0.8	3

#	Article	IF	CITATIONS
91	Compressive sensing based separation of LFM signals. , 2014, , .		7
92	Instantaneous frequency in time $\hat{a} \in \text{``frequency analysis'}$: Enhanced concepts and performance of estimation algorithms. , 2014, 35, 1-13.		138
93	Adaptive variable step algorithm for missing samples recovery in sparse signals. IET Signal Processing, 2014, 8, 246-256.	0.9	71
94	Robust time–frequency representation based on the signal normalization and concentration measures. Signal Processing, 2014, 104, 424-431.	2.1	10
95	Missing samples analysis in signals for applications to L-estimation and compressive sensing. Signal Processing, 2014, 94, 401-408.	2.1	123
96	Noises in randomly sampled sparse signals. Facta Universitatis - Series Electronics and Energetics, 2014, 27, 359-373.	0.6	1
97	Compressive Sensing Based Separation of Nonstationary and Stationary Signals Overlapping in Time-Frequency. IEEE Transactions on Signal Processing, 2013, 61, 4562-4572.	3.2	127
98	Genetic algorithm for rigid body reconstruction after micro-Doppler removal in the radar imaging analysis. Signal Processing, 2013, 93, 1921-1932.	2.1	20
99	L-statistic combined with compressive sensing. Proceedings of SPIE, 2013, , .	0.8	1
100	Concentration measures with an adaptive algorithm for processing sparse signals., 2013,,.		6
101	Analytical rigid body reconstruction after micro-Doppler removal. , 2013, , .		O
102	Time-frequency plane splitting for the first order local polynomial Fourier transform. , 2013, , .		0
103	Single-iteration algorithm for compressive sensing reconstruction., 2013,,.		14
104	A real-time time-frequency based instantaneous frequency estimator. Signal Processing, 2013, 93, 1392-1397.	2.1	8
105	Robust Time-Frequency Analysis Based on the L-Estimation and Compressive Sensing. IEEE Signal Processing Letters, 2013, 20, 499-502.	2.1	68
106	Micro-Doppler Removal in the Radar Imaging Analysis. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49, 1234-1250.	2.6	71
107	Estimation of sinusoidally modulated signal parameters based on the inverse Radon transform. , 2013, , .		15
108	An algorithm for micro-Doppler period estimation. , 2012, , .		7

#	Article	lF	Citations
109	STFT-based estimator of polynomial phase signals. Signal Processing, 2012, 92, 2769-2774.	2.1	57
110	Interference suppression in noise radar systems. Proceedings of SPIE, 2011, , .	0.8	0
111	A parametric method for non-stationary interference suppression in direct sequence spread-spectrum systems. Signal Processing, 2011, 91, 1425-1431.	2.1	10
112	Fractional Fourier transform as a signal processing tool: An overview of recent developments. Signal Processing, 2011, 91, 1351-1369.	2.1	298
113	Robust Processing of Nonstationary Signals. Eurasip Journal on Advances in Signal Processing, 2010, 2010, .	1.0	1
114	Autofocusing of SAR images based on parameters estimated from the PHAF. Signal Processing, 2010, 90, 1382-1391.	2.1	24
115	Method for non-stationary jammer suppression in noise radar systems. IET Signal Processing, 2010, 4, 305.	0.9	10
116	Multiwindow S-method for instantaneous frequency estimation and its application in radar signal analysis. IET Signal Processing, 2010, 4, 363.	0.9	60
117	Cubic-phase function evaluation for multicomponent signals with application to SAR imaging. IET Signal Processing, 2010, 4, 371.	0.9	16
118	Time–frequency-based detection of fast manoeuvring targets. IET Signal Processing, 2010, 4, 287.	0.9	16
119	Micro-Doppler parameter estimation from a fraction of the period. IET Signal Processing, 2010, 4, 201.	0.9	23
120	Editorial: Time-frequency approach to radar detection, imaging, and classification. IET Signal Processing, 2010, 4, 197.	0.9	7
121	Editorial: Time-Frequency Approach to Radar Detection, Imaging, and Classification. IET Signal Processing, 2010, 4, 325.	0.9	11
122	An algorithm for detecting a maneuvering target based on TFR and Viterbi algorithm. , 2010, , .		1
123	CFAR detection and extraction of maneuvering air target in strong sea-clutter via time-frequency-based S-method. , 2009, , .		0
124	Bit error probability approximation for short-time Fourier transform based nonstationary interference excision in DS-SS systems. Signal Processing, 2009, 89, 2178-2184.	2.1	9
125	Intelligent target recognition using micro-Doppler radar signatures. , 2009, , .		4
126	Adaptive Algorithm for Chirp-Rate Estimation. Eurasip Journal on Advances in Signal Processing, 2009, 2009, .	1.0	5

#	Article	IF	Citations
127	Time-Frequency Analysis for Sar and Isar Imaging. NATO Science for Peace and Security Series C: Environmental Security, 2009, , 113-127.	0.1	7
128	Micro-Doppler-based target detection and feature extraction in indoor and outdoor environments. Journal of the Franklin Institute, 2008, 345, 700-722.	1.9	109
129	Quantitative Performance Analysis of Scalogram as Instantaneous Frequency Estimator. IEEE Transactions on Signal Processing, 2008, 56, 3837-3845.	3.2	63
130	Local Polynomial Fourier Transform Receiver for Nonstationary Interference Excision in DSSS Communications. IEEE Transactions on Signal Processing, 2008, 56, 1627-1636.	3.2	33
131	Instantaneous Frequency Estimation Using the \${m S}\$-Transform. IEEE Signal Processing Letters, 2008, 15, 309-312.	2.1	40
132	Time–frequency-based non-stationary interference suppression for noise radar systems. IET Radar, Sonar and Navigation, 2008, 2, 306-314.	0.9	21
133	Mutual interference and low probability of interception capabilities of noise radar. IET Radar, Sonar and Navigation, 2008, 2, 294-305.	0.9	42
134	Real-time motion compensation, image formation and image enhancement of moving targets in ISAR and SAR using S-method-based approach. IET Signal Processing, 2008, 2, 247.	0.9	47
135	SAR imaging of moving targets using polynomial Fourier transform. IET Signal Processing, 2008, 2, 237.	0.9	52
136	Motion compensation in ISAR imaging using the registration–restoration–fusion approach. IET Signal Processing, 2008, 2, 223.	0.9	3
137	Editorial: Signal processing techniques for ISAR and feature extraction. IET Signal Processing, 2008, 2, 189.	0.9	7
138	S-Method-Based Approach for Image Formation, Motion Compensation, and Image Enhancement of Moving Targerts in ISAR and SAR. , 2008, , .		1
139	Robust DFT based on adaptive censored estimate for FM signal processing in non-Gaussian noise environment. , 2007, , .		2
140	Adaptive S-Method for SAR/ISAR Imaging. Eurasip Journal on Advances in Signal Processing, 2007, 2008, .	1.0	10
141	Generalized Representation of Phase Derivatives for Regular Signals. IEEE Transactions on Signal Processing, 2007, 55, 4831-4838.	3.2	33
142	Focusing distorted ISAR images using Adaptive Local Polynomial Fourier Transform. , 2006, , .		2
143	Signal Decomposition by Using the S-Method With Application to the Analysis of HF Radar Signals in Sea-Clutter. IEEE Transactions on Signal Processing, 2006, 54, 4332-4342.	3.2	90
144	Separation of target rigid body and micro-doppler effects in ISAR imaging. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42, 1496-1506.	2.6	118

#	Article	IF	Citations
145	Adaptive Local Polynomial Fourier Transform in ISAR. Eurasip Journal on Advances in Signal Processing, 2006, 2006, 1.	1.0	39
146	Multiple-Clock-Cycle Architecture for the VLSI Design of a System for Time-Frequency Analysis. Eurasip Journal on Advances in Signal Processing, 2006, 2006, 1 .	1.0	26
147	Decomposition of Time-varying Multicomponent Signals using Time-Frequency Based Method., 2006,,.		2
148	Focusing Distorted ISAR Images Using the S-method., 2006,,.		1
149	Estimation of FM signal parameters in impulse noise environments. Signal Processing, 2005, 85, 821-835.	2.1	6
150	Order Adaptive Local Polynomial FT Based Interference Rejection in Spread Spectrum Communication Systems. IEEE Transactions on Instrumentation and Measurement, 2005, 54, 2156-2162.	2.4	31
151	Robust time-frequency distributions based on the robust short time fourier transform. Annales Des Telecommunications/Annals of Telecommunications, 2005, 60, 681-697.	1.6	8
152	Analysis of polynomial FM signals corrupted by heavy-tailed noise. Signal Processing, 2004, 84, 69-75.	2.1	11
153	An algorithm for the Wigner distribution based instantaneous frequency estimation in a high noise environment. Signal Processing, 2004, 84, 631-643.	2.1	149
154	Moments of Multidimensional Polynomial FT. IEEE Signal Processing Letters, 2004, 11, 879-882.	2.1	1
155	Performance Analysis of the Adaptive Algorithm for Bias-to-Variance Tradeoff. IEEE Transactions on Signal Processing, 2004, 52, 1228-1234.	3.2	46
156	Modification of the ICI Rule-Based IF Estimator for High Noise Environments. IEEE Transactions on Signal Processing, 2004, 52, 2655-2661.	3.2	27
157	Nonparametric Algorithm for Local Frequency Estimation of Multidimensional Signals. IEEE Transactions on Image Processing, 2004, 13, 467-474.	6.0	6
158	Combined Adaptive Filter with LMS-Based Algorithms. AEU - International Journal of Electronics and Communications, 2003, 57, 295-299.	1.7	8
159	An Approach to Optimal Watermark Detection. AEU - International Journal of Electronics and Communications, 2003, 57, 355-357.	1.7	18
160	Adaptive windowed Fourier transform. Signal Processing, 2003, 83, 91-100.	2.1	9
161	Instantaneous frequency estimation by using the Wigner distribution and linear interpolation. Signal Processing, 2003, 83, 483-491.	2.1	17
162	Time–frequency signal analysis based on the windowed fractional Fourier transform. Signal Processing, 2003, 83, 2459-2468.	2.1	81

#	Article	IF	Citations
163	Performance of quadratic time~frequency distributions as instantaneous frequency estimators. IEEE Transactions on Signal Processing, 2003, 51, 77-89.	3.2	78
164	Signal reconstruction from two close fractional fourier power spectra. IEEE Transactions on Signal Processing, 2003, 51, 112-123.	3.2	50
165	Robust L-estimation based forms of signal transforms and time-frequency representations. IEEE Transactions on Signal Processing, 2003, 51, 1753-1761.	3.2	86
166	On the S-method based instantaneous frequency estimation. , 2003, , .		17
167	Adaptive channel equalizer with new VSS LMS algorithm. , 2003, , .		1
168	Recursive realization of the robust STFT., 2003,,.		0
169	Nonparametric if and DOA estimation. , 2003, , .		1
170	Adaptive equalizer with zero-noise constrained LMS algorithm. Facta Universitatis - Series Electronics and Energetics, 2003, 16, 127-135.	0.6	0
171	Performance analysis of the adaptive algorithm for bias-to-variance trade-off. Facta Universitatis - Series Electronics and Energetics, 2003, 16, 377-387.	0.6	2
172	An approach to variable step-size LMS algorithm. Electronics Letters, 2002, 38, 927.	0.5	9
173	<title>Wavelet-based communication channel modeling and identification</title> ., 2002, 4738, 64.		3
174	Realization of robust filters in the frequency domain. IEEE Signal Processing Letters, 2002, 9, 333-335.	2.1	16
175	On rotated time-frequency kernels. IEEE Signal Processing Letters, 2002, 9, 378-381.	2.1	40
176	Analysis of noise in time-frequency distributions. IEEE Signal Processing Letters, 2002, 9, 286-289.	2.1	26
177	Time-frequency distributions with complex argument. IEEE Transactions on Signal Processing, 2002, 50, 475-486.	3.2	51
178	An architecture for the vlsi design of systems for time-frequency analysis and time-varying filtering. Annales Des Telecommunications/Annals of Telecommunications, 2002, 57, 974-995.	1.6	32
179	Estimates of the Wigner Distribution in Gaussian Noise Environment. AEU - International Journal of Electronics and Communications, 2002, 56, 337-340.	1.7	11
180	A note on "An overview of aliasing errors in discrete-time formulations of time-frequency representations". IEEE Transactions on Signal Processing, 2001, 49, 257-259.	3.2	7

#	Article	IF	Citations
181	Robust Wigner distribution with application to the instantaneous frequency estimation. IEEE Transactions on Signal Processing, 2001, 49, 2985-2993.	3.2	47
182	A measure of some time–frequency distributions concentration. Signal Processing, 2001, 81, 621-631.	2.1	331
183	Median filter based realizations of the robust time-frequency distributions. Signal Processing, 2001, 81, 1771-1776.	2.1	39
184	Performance of spectrogram as IF estimator. Electronics Letters, 2001, 37, 797.	0.5	38
185	Sensor array signal tracking using a data-driven window approach. Signal Processing, 2000, 80, 2507-2515.	2.1	18
186	Instantaneous frequency estimation using higher order L-Wigner distributions with data-driven order and window length. IEEE Transactions on Information Theory, 2000, 46, 302-311.	1.5	31
187	On the time-frequency analysis based filtering. Annales Des Telecommunications/Annals of Telecommunications, 2000, 55, 216-225.	1.6	36
188	Space/spatial-frequency analysis based filtering. IEEE Transactions on Signal Processing, 2000, 48, 2343-2352.	3.2	42
189	Influence of high noise on the instantaneous frequency estimation using quadratic time-frequency distributions. IEEE Signal Processing Letters, 2000, 7, 317-319.	2.1	45
190	Time–frequency representation based on the reassigned S-method. Signal Processing, 1999, 77, 115-120.	2.1	31
191	Time–frequency analysis of multiple resonances in combustion engine signals. Signal Processing, 1999, 79, 15-28.	2.1	79
192	A virtual instrument for time-frequency analysis. IEEE Transactions on Instrumentation and Measurement, 1999, 48, 1086-1092.	2.4	24
193	The Wigner distribution of noisy signals with adaptive time-frequency varying window. IEEE Transactions on Signal Processing, 1999, 47, 1099-1108.	3.2	62
194	Relationship between the ambiguity function coordinate transformations and the fractional Fourier transform. Annales Des Telecommunications/Annals of Telecommunications, 1998, 53, 316-319.	1.6	11
195	Periodogram with varying and data-driven window length. Signal Processing, 1998, 67, 345-358.	2.1	40
196	On the realization of the polynomial Wigner-Ville distribution for multicomponent signals. IEEE Signal Processing Letters, 1998, 5, 157-159.	2.1	28
197	Instantaneous frequency estimation using the Wigner distribution with varying and data-driven window length. IEEE Transactions on Signal Processing, 1998, 46, 2315-2325.	3.2	199
198	Finite word-length effects in implementation of distributions for time-frequency signal analysis. IEEE Transactions on Signal Processing, 1998, 46, 2035-2040.	3.2	15

#	Article	IF	Citations
199	Algorithm for the instantaneous frequency estimation using time-frequency distributions with adaptive window width. IEEE Signal Processing Letters, 1998, 5, 224-227.	2.1	69
200	An architecture for the realization of a system for time-frequency signal analysis. IEEE Transactions on Circuits and Systems Part 2: Express Briefs, 1997, 44, 600-604.	2.3	45
201	Highly concentrated time-frequency distributions: pseudo quantum signal representation. IEEE Transactions on Signal Processing, 1997, 45, 543-551.	3.2	35
202	Further results on the minimum variance time-frequency distribution kernels. IEEE Transactions on Signal Processing, 1997, 45, 1650-1655.	3.2	41
203	Special purpose hardware for time frequency analysis. Electronics Letters, 1997, 33, 464.	0.5	23
204	Local polynomial Wigner distribution. Signal Processing, 1997, 59, 123-128.	2.1	28
205	Auto-term representation by the reduced interference distributions: a procedure for kernel design. IEEE Transactions on Signal Processing, 1996, 44, 1557-1563.	3.2	74
206	L-class of time-frequency distributions. IEEE Signal Processing Letters, 1996, 3, 22-25.	2.1	36
207	A time-frequency distribution concentrated along the instantaneous frequency. IEEE Signal Processing Letters, 1996, 3, 89-91.	2.1	10
208	Introducing time-frequency distribution with a  complex-time' argument. Electronics Letters, 1996, 32, 1265.	0.5	33
209	Unified approach to noise analysis in the Wigner distribution and spectrogram. Annales Des Telecommunications/Annals of Telecommunications, 1996, 51, 585.	1.6	23
210	An analysis of instantaneous frequency representation using time-frequency distributions-generalized Wigner distribution. IEEE Transactions on Signal Processing, 1995, 43, 549-552.	3.2	78
211	A method for improved distribution concentration in the time-frequency analysis of multicomponent signals using the L-Wigner distribution. IEEE Transactions on Signal Processing, 1995, 43, 1262-1268.	3.2	65
212	On the local frequency, group shift, and cross-terms in some multidimensional time-frequency distributions: a method for multidimensional time-frequency analysis. IEEE Transactions on Signal Processing, 1995, 43, 1719-1724.	3.2	37
213	An analysis of some time-frequency and time-scale distributions. Annales Des Telecommunications/Annals of Telecommunications, 1994, 49, 505.	1.6	48
214	An analysis of the Wigner higher order spectra of multicomponent signals. Annales Des Telecommunications/Annals of Telecommunications, 1994, 49, 132-136.	1.6	12
215	A method for time-frequency analysis. IEEE Transactions on Signal Processing, 1994, 42, 225-229.	3.2	326
216	On the Wigner distribution of discrete-time noisy signals with application to the study of quantization effects. IEEE Transactions on Signal Processing, 1994, 42, 1863-1867.	3.2	41

#	Article	IF	CITATIONS
217	A multitime definition of the Wigner higher order distribution: L-Wigner distribution. IEEE Signal Processing Letters, 1994, 1, 106-109.	2.1	75
218	Wigner distribution of noisy signals. IEEE Transactions on Signal Processing, 1993, 41, 956-960.	3.2	34
219	The least squares boundary residual method in electrostatic and eddy current problems. IEEE Transactions on Magnetics, 1990, 26, 1117-1122.	1.2	2
220	Boundary condition expansion of basis functions method implemented by fast Fourier transform algorithms. IEEE Transactions on Microwave Theory and Techniques, 1990, 38, 296-301.	2.9	4
221	A round-ridge waveguide. Annales Des Telecommunications/Annals of Telecommunications, 1988, 43, 542-547.	1.6	3
222	Combined adaptive system for identification of unknown systems with varying parameters in a noisy environment. , 0 , , .		2
223	A reassignment based method for time-frequency representation. , 0, , .		5
224	Adaptive order and window length higher order time-frequency distributions in the IF estimation. , 0, , .		1
225	The reassigned S-method., 0,,.		1
226	Generalization of the Fourier domain watermarking to the space/spatial-frequency domain., 0,,.		0
227	Robust time-frequency distributions. , 0, , .		7
228	Quadratic and higher order time-frequency analysis based on the short-time Fourier transform. , 0, , .		3
229	Noise analysis in Toeplitz and Hankel kernels for estimating time-varying spectra. , 0, , .		2
230	Optimal resistor ratio in the DAC with low precision resistors \$statistical approach., 0,,.		0
231	Robust PWVD for the analysis of polynomial FM signals in non-Gaussian noise. , 0, , .		0
232	High-resolution data-adaptive time-frequency analysis. , 0, , .		4
233	Robust two-dimensional DFT., 0,,.		0
234	Order adaptive local polynomial FT based interference rejection in spread spectrum communication systems. , 0, , .		1

#	Article	lF	CITATIONS
235	Multiple interferences rejection in spread spectrum communication systems by using local polynomial Fourier transform. , 0, , .		O
236	On the Capon's method application in time-frequency analysis. , 0, , .		2
237	Modelling of Signal's Time-Frequency Content Using Warped Complex-Time Distributions. , 0, , .		2
238	Time-Frequency Detection Using Gabor Filter Bank and Viterbi Based Grouping Algorithm., 0,,.		12
239	Combination of non-linear filters in time and frequency domain. , 0, , .		3
240	Multidimensional reassignment method., 0,,.		0
241	Image denoising using RANSAC and compressive sensing. Multimedia Tools and Applications, 0, , .	2.6	1