Paul J Hooykaas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7054607/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature, 1983, 303, 179-180.	27.8	1,716
2	Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nature Biotechnology, 1998, 16, 839-842.	17.5	811
3	A PINOID-Dependent Binary Switch in Apical-Basal PIN Polar Targeting Directs Auxin Efflux. Science, 2004, 306, 862-865.	12.6	703
4	Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Current Genetics, 2005, 48, 1-17.	1.7	445
5	The PINOID protein kinase regulates organ development in <i>Arabidopsis</i> by enhancing polar auxin transport. Development (Cambridge), 2001, 128, 4057-4067.	2.5	408
6	VirB/D4-Dependent Protein Translocation from Agrobacterium into Plant Cells. Science, 2000, 290, 979-982.	12.6	379
7	Overexpression of a Novel Arabidopsis Gene Related to Putative Zinc-Transporter Genes from Animals Can Lead to Enhanced Zinc Resistance and Accumulation. Plant Physiology, 1999, 119, 1047-1056.	4.8	371
8	Crown gall plant tumors of abnormal morphology, induced by Agrobacterium tumefaciens carrying mutated octopine Ti plasmids; analysis of T-DNA functions. Gene, 1981, 14, 33-50.	2.2	368
9	Root lectin as a determinant of host–plant specificity in the Rhizobium–legume symbiosis. Nature, 1989, 338, 579-581.	27.8	363
10	The Bases of Crown Gall Tumorigenesis. Journal of Bacteriology, 2000, 182, 3885-3895.	2.2	353
11	Octopine Ti-plasmid deletion mutants of Agrobacterium tumefaciens with emphasis on the right side of the T-region. Plasmid, 1982, 7, 15-29.	1.4	297
12	An <i>Arabidopsis</i> Minute-like phenotype caused by a semi-dominant mutation in a <i>RIBOSOMAL PROTEIN S5</i> gene. Development (Cambridge), 2001, 128, 4289-4299.	2.5	267
13	Sym plasmid of Rhizobium trifolii expressed in different rhizobial species and Agrobacterium tumefaciens. Nature, 1981, 291, 351-353.	27.8	264
14	Positive charge is an important feature of the C-terminal transport signal of the VirB/D4-translocated proteins of Agrobacterium. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 832-837.	7.1	263
15	Agrobacterium and plant genetic engineering. Plant Molecular Biology, 1992, 19, 15-38.	3.9	246
16	Conjugative Transfer by the Virulence System of Agrobacterium tumefaciens. Science, 1992, 256, 1324-1327.	12.6	229
17	The Virulence System of Agrobacterium Tumefaciens. Annual Review of Phytopathology, 1994, 32, 157-181.	7.8	219
18	Expression of Ti plasmid genes in monocotyledonous plants infected with Agrobacterium tumefaciens. Nature, 1984, 311, 763-764.	27.8	218

#	Article	IF	CITATIONS
19	Symbiotic phenotypes and translocated effector proteins of the Mesorhizobium loti strain R7A VirB/D4 type IV secretion system. Molecular Microbiology, 2004, 54, 561-574.	2.5	174
20	Anaplasma phagocytophilum AnkA secreted by type IV secretion system is tyrosine phosphorylated by Abl-1 to facilitate infection. Cellular Microbiology, 2007, 9, 2644-2657.	2.1	174
21	Agrobacterium-mediated transformation of the filamentous fungus Aspergillus awamori. Nature Protocols, 2008, 3, 1671-1678.	12.0	174
22	PINOID-Mediated Signaling Involves Calcium-Binding Proteins. Plant Physiology, 2003, 132, 1623-1630.	4.8	161
23	An Arabidopsis hAT-like transposase is essential for plant development. Nature, 2005, 436, 282-284.	27.8	159
24	Efficient gene targeting inKluyveromyces lactis. Yeast, 2004, 21, 781-792.	1.7	152
25	Integration of Agrobacterium tumefaciens T-DNA in the Saccharomyces cerevisiae genome by illegitimate recombination. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 15272-15275.	7.1	149
26	Transformation of Aspergillus awamori by Agrobacterium tumefaciens–mediated homologous recombination. Nature Biotechnology, 1999, 17, 598-601.	17.5	147
27	A comparison of virulence determinants in an octopine Ti plasmid, a nopaline Ti plasmid, and an Ri plasmid by complementation analysis of Agrobacterium tumefaciens mutants. Plasmid, 1984, 11, 195-205.	1.4	143
28	Maintenance of Embryonic Auxin Distribution for Apical-Basal Patterning by PIN-FORMED–Dependent Auxin Transport in Arabidopsis. Plant Cell, 2005, 17, 2517-2526.	6.6	135
29	Non-homologous end-joining proteins are required for Agrobacterium T-DNA integration. EMBO Journal, 2001, 20, 6550-6558.	7.8	134
30	Molecular mechanisms of crown gall tumorigenesis. Critical Reviews in Plant Sciences, 1991, 10, 1-32.	5.7	127
31	Interaction of the virulence protein VirF of Agrobacterium tumefaciens with plant homologs of the yeast Skp1 protein. Current Biology, 2001, 11, 258-262.	3.9	125
32	Specificity of signal molecules in the activation of Agrobacterium virulence gene expression. Molecular Microbiology, 1989, 3, 969-977.	2.5	123
33	Restoration of virulence of Vir region mutants of Agrobacterium tumefaciens strain B6S3 by coinfection with normal and mutant Agrobacterium strains. Molecular Genetics and Genomics, 1984, 195, 159-163.	2.4	121
34	Severe Developmental Defects, Hypersensitivity to DNA-Damaging Agents, and Lengthened Telomeres in Arabidopsis <i>MRE11</i> Mutants. Plant Cell, 2002, 14, 2451-2462.	6.6	119
35	Analysis of Vir protein translocation from Agrobacterium tumefaciens using Saccharomyces cerevisiae as a model: evidence for transport of a novel effector protein VirE3. Nucleic Acids Research, 2003, 31, 860-868.	14.5	119
36	T-DNA integration in plants results from polymerase-Ĵ,-mediated DNA repair. Nature Plants, 2016, 2, 16164.	9.3	118

#	Article	IF	CITATIONS
37	Isolation and characterization of cDNA clones corresponding with mRNAs that accumulate during auxin-induced lateral root formation. Plant Molecular Biology, 1999, 39, 273-287.	3.9	117
38	Diphtheria Toxin-Mediated Cell Ablation Reveals Interregional Communication during Arabidopsis Seed Development. Plant Physiology, 2003, 133, 1882-1892.	4.8	113
39	Identification of the sym plasmid of Rhizobium leguminosarum strain 1001 and its transfer to and expression in other Rhizobia and Agrobacterium tumefaciens. Plasmid, 1982, 8, 73-82.	1.4	112
40	Analysis of the complete nucleotide sequence of theAgrobacterium tumefaciens virB operon. Nucleic Acids Research, 1988, 16, 4621-4636.	14.5	108
41	The Molecular Genetics Of Crown Gall Tumorigenesis. Advances in Genetics, 1984, 22, 209-283.	1.8	107
42	Site-specific integration of Agrobacterium T-DNA in Arabidopsis thaliana mediated by Cre recombinase. Nucleic Acids Research, 1998, 26, 2729-2734.	14.5	107
43	ZFNâ€induced mutagenesis and geneâ€targeting in Arabidopsis through <i>Agrobacterium</i> â€mediated floral dip transformation. Plant Biotechnology Journal, 2009, 7, 821-835.	8.3	107
44	Transgenic N. glauca plants expressing bacterial virulence gene virF are converted into hosts for nopaline strains of A. tumefaciens. Nature, 1993, 363, 69-71.	27.8	105
45	Live cell imaging of repetitive DNA sequences via GFP-tagged polydactyl zinc finger proteins. Nucleic Acids Research, 2007, 35, e107-e107.	14.5	104
46	Octopine and nopaline strains of Agrobacterium tumefaciens differ in virulence; molecular characterization of the virF locus. Plant Molecular Biology, 1990, 14, 249-259.	3.9	102
47	Proteins encoded by an auxin-regulated gene family of tobacco share limited but significant homology with glutathione S-transferases and one member indeed shows in vitro GST activity. Plant Molecular Biology, 1993, 21, 965-972.	3.9	100
48	Molecular mechanism of Ti plasmid mobilization by R plasmids: Isolation of Ti plasmids with transposon-insertions in Agrobacterium tumefaciens. Plasmid, 1980, 4, 64-75.	1.4	97
49	Complementation of Agrobacterium tumefaciens tumor-inducing aux mutants by genes from the TR-region of the Ri plasmid of Agrobacterium rhizogenes. Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 6935-6939.	7.1	97
50	Sequence determination and characterization of the replicator region in the tumor-inducing plasmid pTiB6S3. Journal of Bacteriology, 1989, 171, 1665-1672.	2.2	91
51	Clonal analysis of heterogeneous crown gall tumor tissues induced by wild-type and shooter mutant strains ofAgrobacterium tumefaciens-expression of T-DNA genes. Plant Molecular Biology, 1983, 2, 321-333.	3.9	89
52	Increased telomere length and hypersensitivity to DNA damaging agents in an Arabidopsis KU70 mutant. Nucleic Acids Research, 2002, 30, 3395-3400.	14.5	89
53	The Arabidopsis AtLIG4 gene is required for the repair of DNA damage, but not for the integration of Agrobacterium T-DNA. Nucleic Acids Research, 2003, 31, 4247-4255.	14.5	87
54	Transformation of plant cells via Agrobacterium. Plant Molecular Biology, 1989, 13, 327-336.	3.9	85

Paul J Hooykaas

#	Article	IF	CITATIONS
55	Nucleotide sequence of the virulence genevirGof theAgrobacterium tumefaciensoctopine Ti plasmid: significant homology betweenvirGand the regulatory genesompR,phoBanddyeofE. coli. Nucleic Acids Research, 1986, 14, 9933-9942.	14.5	80
56	Cre/lox-mediated site-specific integration of Agrobacterium T-DNA in Arabidopsis thaliana by transient expression of cre. Plant Molecular Biology, 1998, 38, 393-406.	3.9	80
57	2,4-Dichlorophenoxyacetic Acid and Related Chlorinated Compounds Inhibit Two Auxin-Regulated Type-III Tobacco Glutathione S-Transferases. Plant Physiology, 1995, 107, 1139-1146.	4.8	77
58	Recognition of the Agrobacterium tumefaciens VirE2 Translocation Signal by the VirB/D4 Transport System Does Not Require VirE1. Plant Physiology, 2003, 133, 978-988.	4.8	75
59	The Agrobacterium tumefaciens T-DNA gene 6b is an onc gene. Plant Molecular Biology, 1988, 11, 791-794.	3.9	74
60	Targeted recombination in plants using Agrobacterium coincides with additional rearrangements at the target locus. Plant Journal, 1995, 7, 109-119.	5.7	74
61	<scp>ZFN</scp> â€mediated gene targeting of the Arabidopsis <i>protoporphyrinogen oxidase</i> gene through <i>Agrobacterium</i> â€mediated floral dip transformation. Plant Biotechnology Journal, 2013, 11, 510-515.	8.3	74
62	Genetic requirements for the targeted integration of Agrobacterium T-DNA in Saccharomyces cerevisiae. Nucleic Acids Research, 2003, 31, 826-832.	14.5	72
63	Transfer of the octopine T-DNA segment to plant cells mediated by different types of Agrobacterium tumor- or root-inducing plasmids: generality of virulence systems. Journal of Bacteriology, 1984, 158, 383-385.	2.2	72
64	The discernible, structural features of the acidic polysaccharides secreted by different Rhizobium species are the same. Carbohydrate Research, 1986, 146, 307-326.	2.3	71
65	Poly(ADP-ribose)polymerases are involved in microhomology mediated back-up non-homologous end joining in Arabidopsis thaliana. Plant Molecular Biology, 2013, 82, 339-351.	3.9	70
66	Silent T-DNA genes in plant lines transformed by Agrobacterium tumefaciens are activated by grafting and by 5-azacytidine treatment. Plant Molecular Biology, 1984, 3, 333-336.	3.9	69
67	Environmental conditions differentially affect vir gene induction in different Agrobacterium strains. Role of the VirA sensor protein. Plant Molecular Biology, 1991, 16, 1051-1059.	3.9	69
68	Electroporation of megaplasmids into Agrobacterium. Plant Molecular Biology, 1991, 16, 917-918.	3.9	68
69	Localization and Topology of VirB Proteins of Agrobacterium tumefaciens. Plasmid, 1994, 32, 212-218.	1.4	68
70	Deviating T-DNA transfer fromAgrobacterium tumefaciens to plants. Plant Molecular Biology, 1996, 31, 677-681.	3.9	67
71	Recombination in the Plant Genome and its Application in Biotechnology. Critical Reviews in Plant Sciences, 1999, 18, 1-31.	5.7	67
72	A functional map of the replicator region of the octopine Ti plasmid. Plasmid, 1982, 7, 119-132.	1.4	63

#	Article	IF	CITATIONS
73	Electroporation of Agrobacterium tumefaciens. , 1995, 55, 63-72.		63
74	Gene targeting and instability of Agrobacterium T-DNA loci in the plant genome. Plant Journal, 1997, 11, 717-728.	5.7	63
75	T-DNA from Agrobacterium tumefaciens as an efficient tool for gene targeting in Kluyveromyces lactis. Molecular Genetics and Genomics, 1999, 261, 115-121.	2.4	63
76	The Agrobacterium VirE3 effector protein: a potential plant transcriptional activator. Nucleic Acids Research, 2006, 34, 6496-6504.	14.5	62
77	A Novel Subtilisin-like Protease Gene from Arabidopsis thaliana is Expressed at Sites of Lateral Root Emergence. DNA Research, 1999, 6, 13-19.	3.4	61
78	Fingerprinting and sequence homology of plasmids from different virulent strains of Agrobacterium rhizogenes. Plasmid, 1981, 5, 170-182.	1.4	59
79	Ehrlichia chaffeensis Tandem Repeat Proteins and Ank200 are Type 1 Secretion System Substrates Related to the Repeats-in-Toxin Exoprotein Family. Frontiers in Cellular and Infection Microbiology, 2011, 1, 22.	3.9	58
80	Tumor formation and rhizogenicity of Agro bacterium rhizogenes carrying Ti plasmids. Gene, 1980, 11, 79-87.	2.2	57
81	Insertional mutagenesis in yeasts using T-DNA fromAgrobacterium tumefaciens. Yeast, 2002, 19, 529-536.	1.7	57
82	Rhizobium nod genes are involved in inducing an early nodulin gene. Nature, 1986, 323, 564-566.	27.8	56
83	Nonreciprocal homologous recombination between Agrobacterium transferred DNA and a plant chromosomal locus Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 7346-7350.	7.1	56
84	Towards a molecular genetic system for the pathogenic fungus Paracoccidioides brasiliensis. Fungal Genetics and Biology, 2007, 44, 1387-1398.	2.1	54
85	Overdrive is a T-region transfer enhancer which stimulates T-strand production inAgrobacterium tumefaciens. Nucleic Acids Research, 1987, 15, 8983-8997.	14.5	53
86	Further Characterization of Expression of Auxin-Induced Genes in Tobacco (Nicotiana tabacum) Cell-Suspension Cultures. Plant Physiology, 1993, 102, 513-520.	4.8	53
87	A chromosomal linkage map of Agrobacterium tumefaciens and a comparison with the maps of Rhizobium spp. Molecular Genetics and Genomics, 1982, 188, 12-17.	2.4	50
88	Stable Recombinase-Mediated Cassette Exchange in Arabidopsis Using <i>Agrobacterium tumefaciens</i> Â. Plant Physiology, 2007, 145, 1282-1293.	4.8	50
89	Role of bacterial virulence proteins in Agrobacterium-mediated transformation of Aspergillus awamori. Fungal Genetics and Biology, 2004, 41, 571-578.	2.1	49
90	The stoichiometry of E. coli 30S ribosomal protein S1 on in vivo and in vitro polyribosomes. FEBS Letters, 1974, 41, 323-326.	2.8	48

#	Article	IF	CITATIONS
91	Identification of an Agrobacterium tumefaciens pTiB6S3 vir region fragment that enhances the virulence of pTiC58. Molecular Genetics and Genomics, 1985, 199, 189-193.	2.4	48
92	CRISPR/Cas9-Induced Double-Strand Break Repair in <i>Arabidopsis</i> Nonhomologous End-Joining Mutants. G3: Genes, Genomes, Genetics, 2017, 7, 193-202.	1.8	48
93	Single-stranded DNA used as an efficient new vehicle for transformation of plant protoplasts. Plant Molecular Biology, 1989, 13, 711-719.	3.9	47
94	Promoter analysis of the auxin-regulated tobacco glutathione S-transferase genes Nt103-1 and Nt103-35. Plant Molecular Biology, 1995, 29, 413-429.	3.9	47
95	Repression of Small bacteriocin excretion in Rhizobium leguminosarum and Rhizobium trifolii by transmissible plasmids. Molecular Genetics and Genomics, 1983, 192, 171-176.	2.4	45
96	<i>Agrobacterium</i> -Mediated T-DNA Transfer and Integration by Minimal VirD2 Consisting of the Relaxase Domain and a Type IV Secretion System Translocation Signal. Molecular Plant-Microbe Interactions, 2009, 22, 1356-1365.	2.6	43
97	Localization of the replication control region on the physical map of the octopine Ti plasmid. Plasmid, 1980, 4, 184-195.	1.4	41
98	Molecular characterization of the virulence gene virA of the Agrobacterium tumefaciens octopine Ti plasmid. Plant Molecular Biology, 1987, 9, 635-645.	3.9	41
99	Molecular analysis of "de novo" purine biosynthesis in solanaceous species and in Arabidopsis Thaliana. Frontiers in Bioscience - Landmark, 2004, 9, 1803.	3.0	41
100	Visualization of VirE2 protein translocation by the <i><scp>A</scp>grobacterium</i> type IV secretion system into host cells. MicrobiologyOpen, 2014, 3, 104-117.	3.0	41
101	True gene-targeting events by CRISPR/Cas-induced DSB repair of the PPO locus with an ectopically integrated repair template. Scientific Reports, 2018, 8, 3338.	3.3	40
102	Non-oncogenic plant vectors for use in the agrobacterium binary system. Plant Molecular Biology, 1985, 5, 85-89.	3.9	37
103	Auxin-Sensitive Elements from Promoters of Tobacco GST Genes and a Consensus as-1-Like Element Differ Only in Relative Strength. Plant Physiology, 1996, 110, 79-88.	4.8	37
104	The Virulence System of Agrobacterium Tumefaciens. Current Plant Science and Biotechnology in Agriculture, 1993, , 37-49.	0.0	37
105	Expression of a Rhizobium phaseoli Sym plasmid in R. trifolii and Agrobacterium tumefaciens: Incompatibility with a R. trifolii Sym plasmid. Plasmid, 1985, 14, 47-52.	1.4	36
106	Mutational analysis of the transcriptional activator VirG of Agrobacterium tumefaciens. Journal of Bacteriology, 1994, 176, 6418-6426.	2.2	36
107	Effectiveness of the bacterial gene codA encoding cytosine deaminase as a negative selectable marker in Agrobacterium-mediated plant transformation. Plant Journal, 1997, 11, 1377-1385.	5.7	34
108	Activation tagging of the two closely linked genes LEP and VAS independently affects vascular cell number. Plant Journal, 2002, 32, 819-830.	5.7	34

#	Article	IF	CITATIONS
109	The SLEEPERgenes: a transposase-derived angiosperm-specific gene family. BMC Plant Biology, 2012, 12, 192.	3.6	34
110	Agrobacterium rhizogenes GALLS Protein Contains Domains for ATP Binding, Nuclear Localization, and Type IV Secretion. Journal of Bacteriology, 2006, 188, 8222-8230.	2.2	33
111	Cre/ lox -mediated recombination in Arabidopsis : evidence for transmission of a translocation and a deletion event. Chromosoma, 2000, 109, 287-297.	2.2	32
112	<i>Agrobacterium tumefaciens</i> VirC2 enhances T-DNA transfer and virulence through its C-terminal ribbon–helix–helix DNA-binding fold. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9643-9648.	7.1	32
113	Localization of the VirA domain involved in acetosyringone-mediatedvir gene induction inAgrobacterium tumefaciens. Plant Molecular Biology, 1994, 25, 899-907.	3.9	31
114	Isolation and characterization of an auxin-inducible glutathione S-transferase gene of Arabidopsis thaliana. Plant Molecular Biology, 1996, 30, 839-844.	3.9	31
115	Crown Gall Tumor and Root Nodule Formation by the BacteriumPhyllobacterium myrsinacearumafter the Introduction of anAgrobacteriumTi Plasmid or aRhizobiumSym Plasmid. Molecular Plant-Microbe Interactions, 1988, 1, 231.	2.6	31
116	<i>Agrobacterium tumefaciens</i> T-DNA Integration and Gene Targeting in <i>Arabidopsis thaliana</i> Non-Homologous End-Joining Mutants. Journal of Botany, 2012, 2012, 1-13.	1.2	29
117	Agrobacterium -Mediated Transformation of Aspergillus awamori in the Absence of Full-Length VirD2, VirC2, or VirE2 Leads to Insertion of Aberrant T-DNA Structures. Journal of Bacteriology, 2004, 186, 2038-2045.	2.2	28
118	Mechanisms of intermolecular homologous recombination in plants as studied with single- and double-stranded DNA molecules. Nucleic Acids Research, 1992, 20, 2785-2794.	14.5	27
119	Nucleotide sequence corrections of the uidA open reading frame encoding β-glucuronidase. Gene, 1994, 138, 259-260.	2.2	27
120	The <i>Agrobacterium tumefaciens</i> virulence protein VirE3 is a transcriptional activator of the Fâ€box gene <i><scp>VBF</scp></i> . Plant Journal, 2015, 84, 914-924.	5.7	27
121	Functional analysis of the Agrobacterium tumefaciens octopine Ti-plasmid left and right T-region border fragments. Plant Molecular Biology, 1987, 8, 95-104.	3.9	26
122	Gene replacement. Molecular Breeding, 1995, 1, 123-132.	2.1	26
123	Molecular characterization of the virulence gene virA of the Agrobacterium tumefaciens octopine Ti plasmid. Plant Molecular Biology, 1988, 11, 227-237.	3.9	25
124	Factors affecting the rate of T-DNA transfer from Agrobacterium tumefaciens to Nicotiana glauca plant cells. Plant Molecular Biology, 1992, 19, 1019-1030.	3.9	25
125	The virA promoter is a host-range determinant in Agrobacterium tumefaciens. Molecular Microbiology, 1993, 7, 719-724.	2.5	24
126	The chimeric VirA-tar receptor protein is locked into a highly responsive state. Journal of Bacteriology, 1993, 175, 5706-5709.	2.2	24

#	Article	IF	CITATIONS
127	Improvements in the transformation of Arabidopsis thaliana C24 leaf-discs by Agrobacterium tumefaciens. Plant Cell Reports, 1996, 15, 572-577.	5.6	22
128	Genetic transformation of Knufia petricola A95 - a model organism for biofilm-material interactions. AMB Express, 2014, 4, 80.	3.0	22
129	Ti plasmid containing Rhizobium meliloti are non-tumorigenic on plants, despite proper virulence gene induction and T-strand formation. Archives of Microbiology, 1989, 153, 85-89.	2.2	21
130	Title is missing!. Plant Growth Regulation, 2001, 34, 305-315.	3.4	21
131	Enhanced targeted integration mediated by translocated I-Scel during the Agrobacterium mediated transformation of yeast. Scientific Reports, 2015, 5, 8345.	3.3	21
132	Method for the transfer of large cryptic, non-self-transmissible plasmids: Ex planta transfer of the virulence plasmid of Agrobacterium rhizogenes. Plasmid, 1982, 8, 94-96.	1.4	20
133	Mutational analysis of the conserved domains of a T-region border repeat of Agrobacterium tumefaciens. Plant Molecular Biology, 1989, 13, 523-531.	3.9	20
134	The lysine-rich C-terminal repeats of the centromere-binding factor 5 (Cbf5) ofKluyveromyces lactis are not essential for function. Yeast, 1998, 14, 37-48.	1.7	20
135	Effects of different zinc finger transcription factors on genomic targets. Biochemical and Biophysical Research Communications, 2006, 339, 263-270.	2.1	20
136	Employing libraries of zinc finger artificial transcription factors to screen for homologous recombination mutants in Arabidopsis. Plant Journal, 2006, 48, 475-483.	5.7	20
137	Function of heterologous and pseudo border repeats in T region transfer via the octopine virulence system of Agrobacterium tumefaciens. Plant Molecular Biology, 1988, 11, 773-781.	3.9	19
138	The Presence and Characterization of a virF Gene on Agrobacterium vitis Ti Plasmids. Molecular Plant-Microbe Interactions, 1998, 11, 429-433.	2.6	19
139	Genome Sequence of the Octopine-Type Agrobacterium tumefaciens Strain Ach5. Genome Announcements, 2014, 2, .	0.8	19
140	Signal transduction in theRhizobium melilotidicarboxylic acid transport system. FEMS Microbiology Letters, 1995, 126, 25-30.	1.8	18
141	Sequence analysis of the vir-region from Agrobacterium tumefaciens octopine Ti plasmid pTi15955. Journal of Experimental Botany, 2000, 51, 1167-1169.	4.8	18
142	Agrobacterium-Mediated Transformation of Non-Plant Organisms. , 2008, , 649-675.		18
143	Deletion of host histone acetyltransferases and deacetylases strongly affectsAgrobacterium-mediated transformation ofSaccharomyces cerevisiae. FEMS Microbiology Letters, 2009, 298, 228-233.	1.8	18
144	Agrobacterium-Mediated Transformation of Yeast and Fungi. Current Topics in Microbiology and Immunology, 2018, 418, 349-374.	1.1	18

#	Article	IF	CITATIONS
145	Distinct mechanisms for genomic attachment of the 5′ and 3′ ends of Agrobacterium T-DNA in plants. Nature Plants, 2022, 8, 526-534.	9.3	17
146	Non-recombinant background in gene targeting: illegitimate recombination between a hpt gene and a defective 5′ deleted nptII gene can restore a Kmr phenotype in tobacco. Plant Molecular Biology, 1994, 25, 721-733.	3.9	16
147	Root Transformation by Agrobacterium tumefaciens. , 1998, 82, 227-244.		16
148	DAYSLEEPER: a nuclear and vesicular-localized protein that is expressed in proliferating tissues. BMC Plant Biology, 2013, 13, 211.	3.6	16
149	Gene targeting in plants using theAgrobacterium vector system. Transgenic Research, 1992, 1, 114-123.	2.4	15
150	Increased Endogenous Auxin Production in Arabidopsis thaliana Causes Both Earlier Described and Novel Auxin-Related Phenotypes. Journal of Plant Growth Regulation, 2003, 22, 240-252.	5.1	15
151	Virulence protein VirD5 of <i>Agrobacterium tumefaciens</i> binds to kinetochores in host cells via an interaction with Spt4. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10238-10243.	7.1	15
152	Complete sequence of the tumor-inducing plasmid pTiChry5 from the hypervirulent Agrobacterium tumefaciens strain Chry5. Plasmid, 2018, 96-97, 1-6.	1.4	15
153	Gene Organization of the Ti-Plasmid. Plant Gene Research, 1984, , 287-309.	0.4	15
154	Studies on the structure of cointegrates between octopine and nopaline Ti-plasmids and their tumour-inducing properties. Plant Molecular Biology, 1982, 1, 265-276.	3.9	14
155	Chromosomal nodulation genes: Sym-plasmid containing Agrobacterium strains need chromosomal virulence genes (chvA and chvB) for nodulation. Plant Molecular Biology, 1987, 8, 105-108.	3.9	14
156	Complete Sequence of Succinamopine Ti-Plasmid pTiEU6 Reveals Its Evolutionary Relatedness with Nopaline-Type Ti-Plasmids. Genome Biology and Evolution, 2019, 11, 2480-2491.	2.5	14
157	CRISPR/Cas9 Mutagenesis by Translocation of Cas9 Protein Into Plant Cells via the Agrobacterium Type IV Secretion System. Frontiers in Genome Editing, 2020, 2, 6.	5.2	14
158	Involvement of <scp>Rad</scp> 52 in <scp>T</scp> â€ <scp>DNA</scp> circle formation during <scp><i>A</i></scp> <i>grobacterium tumefaciens</i> â€mediated transformation of <scp><i>S</i></scp> <i>accharomyces cerevisiae</i> . Molecular Microbiology, 2014, 91, 1240-1251.	2.5	13
159	Gene targeting in polymerase thetaâ€deficient <i>Arabidopsis thaliana</i> . Plant Journal, 2022, 109, 112-125.	5.7	13
160	The Ti-plasmid of Agrobacterium tumefaciens: a natural genetic engineer. Trends in Biochemical Sciences, 1985, 10, 307-309.	7.5	12
161	Design of a novel system for the construction of vectors for Agrobacterium-mediated plant transformation. Molecular Genetics and Genomics, 1992, 236, 1-7.	2.4	12
162	Interaction of the Agrobacterium tumefaciens virulence protein VirD2 with histones. Microbiology (United Kingdom), 2015, 161, 401-410.	1.8	11

#	Article	IF	CITATIONS
163	VirD4-independent transformation by CloDF13 evidences an unknown factor required for the genetic colonization of plants via Agrobacterium. Molecular Microbiology, 2003, 47, 891-901.	2.5	10
164	The genome sequence of hairy root <i>Rhizobium</i> Â <i>rhizogenes</i> strain LBA9402: Bioinformatics analysis suggests the presence of a new opine system in the agropine Ri plasmid. MicrobiologyOpen, 2021, 10, e1180.	3.0	10
165	Phenotypic expression of mutations in a wide-host-range R plasmid in Escherichia coli and Rhizobium meliloti. Journal of Bacteriology, 1982, 150, 395-397.	2.2	10
166	The lysopinedehydrogenase gene used as a marker for the selection of octopine crown gall cells. Plant Molecular Biology, 1982, 1, 133-142.	3.9	9
167	Zinc finger artificial transcription factor–based nearest inactive analogue/nearest active analogue strategy used for the identification of plant genes controlling homologous recombination. Plant Biotechnology Journal, 2013, 11, 1069-1079.	8.3	9
168	Identification and Characterization of thenodD Gene inRhizobium leguminosarumstrain 1001. Molecular Plant-Microbe Interactions, 1988, 1, 145.	2.6	9
169	Tumor formation on plants by mixtures of attenuated Agrobacterium tumefaciens T-DNA mutants. Plant Molecular Biology, 1984, 3, 337-344.	3.9	8
170	Selection of Arabidopsis mutants overexpressing genes driven by the promoter of an auxin-inducible glutathione S-transferase gene. Plant Molecular Biology, 1999, 39, 979-990.	3.9	8
171	Application of phi <scp>LOV</scp> 2.1 as a fluorescent marker for visualization of <i>Agrobacterium</i> effector protein translocation. Plant Journal, 2018, 96, 685-699.	5.7	8
172	Complete genomic sequence and phylogenomics analysis of Agrobacterium strain AB2/73: a new Rhizobium species with a unique mega-Ti plasmid. BMC Microbiology, 2021, 21, 295.	3.3	8
173	Expression of an auxin-inducible promoter of tobacco in Arabidopsis thaliana. Plant Growth Regulation, 1996, 18, 7-14.	3.4	7
174	An Arabidopsis mutant with high operating efficiency of Photosystem II and low chlorophyll fluorescence. Scientific Reports, 2017, 7, 3314.	3.3	7
175	Enhancement of Arabidopsis growth characteristics using genome interrogation with artificial transcription factors. PLoS ONE, 2017, 12, e0174236.	2.5	7
176	The N-terminal domain of VirG of Agrobacterium tumefadens: modelling and analysis of mutant phenotypes. Protein Engineering, Design and Selection, 1994, 7, 905-909.	2.1	6
177	Yeast (Saccharomyces cerevisiae). , 2006, 344, 465-473.		6
178	The <i>Agrobacterium</i> VirD5 protein hyperactivates the mitotic Aurora kinase in host cells. New Phytologist, 2019, 222, 1551-1560.	7.3	6
179	Gene Replacement in Plants. , 1994, , 191-217.		6
180	JAZ8 Interacts With VirE3 Attenuating Agrobacterium Mediated Root Tumorigenesis. Frontiers in Plant Science, 2021, 12, 685533.	3.6	6

Paul J Hooykaas

#	Article	IF	CITATIONS
181	Bidirectional transfer from a 24 bp border repeat ofAgrobacterium tumefaciens. Nucleic Acids Research, 1988, 16, 10225-10236.	14.5	5
182	Agrobacterium and plant genetic engineering. , 1992, , 15-38.		5
183	Transformation of Arabidopsis thaliana C24 Leaf Discs by Agrobacterium tumefaciens. , 1998, 82, 245-258.		5
184	Isolation and characterization of KlUBP2 , a ubiquitin hydrolase gene of Kluyveromyces lactis that can suppress a ts-mutation in CBF2 , a gene encoding a centromeric protein of Saccharomyces cerevisiae. Current Genetics, 2000, 38, 17-22.	1.7	5
185	Programmed Cell Death in the Leaves of the Arabidopsis Spontaneous Necrotic Spots (sns-D) Mutant Correlates with Increased Expression of the Eukaryotic Translation Initiation Factor elF4B2. Frontiers in Plant Science, 2011, 2, 9.	3.6	5
186	Genome interrogation for novel salinity tolerant Arabidopsis mutants. Plant, Cell and Environment, 2016, 39, 2650-2662.	5.7	5
187	Transformation Mediated by Agrobacterium tumefaciens. , 2004, , 41-65.		5
188	Agrobacterium molecular genetics. , 1993, , 83-87.		5
189	Isolation and partial characterization of the Kluyveromyces lactis homologue of SKP1. Current Genetics, 2000, 38, 8-16.	1.7	4
190	Interactions between Agrobacterium Tumefaciens and Plant Cells. , 1998, , 207-229.		4
191	Agrobacterium tumefaciens Ti Plasmid-Derived Plant Vectors for Dicotyledonous and Monocotyledonous Plants. , 1988, , 517-538.		3
192	Characterization of the Agrobacterium octopine-cucumopine catabolic plasmid pAtAg67. Plasmid, 2022, 121, 102629.	1.4	3
193	Improvements in the transformation of Arabidopsis thaliana C24 leaf-discs by Agrobacterium tumefaciens. Plant Cell Reports, 1996, 15, 572-577.	5.6	3
194	Title is missing!. Plant Molecular Biology, 1998, 38, 1269-1269.	3.9	2
195	Agrobacterium, The Genetic Engineer. , 2015, , 355-361.		2
196	Cre Reporter Assay for Translocation (CRAfT): A Tool for the Study of Protein Translocation into Host Cells. Methods in Molecular Biology, 2014, 1197, 103-121.	0.9	2
197	Agrobacterium molecular genetics. , 1994, , 75-83.		2
198	Two novel strategies to assess in vivo meiotic protein expression in Arabidopsis thaliana. F1000Research, 0, 8, 539.	1.6	2

#	ARTICLE	IF	CITATIONS
199	[18] Detection of monocot transformation via Agrobacterium tumefaciens. Methods in Enzymology, 1987, , 305-313.	1.0	1
200	Silene plastocyanin is fully functional in transgenic tobacco. Plant Science, 1992, 83, 45-54.	3.6	1
201	Molecular approaches to study plant hormone signalling. New Comprehensive Biochemistry, 1999, 33, 391-410.	0.1	1
202	The Agrobacterium Virulence System. , 1991, , 193-204.		1
203	Plasmid genes involved in the interactions between bacteria and plant cells. Antonie Van Leeuwenhoek, 1980, 46, 226-227.	1.7	0
204	Ti plasmids as vectors for genetic transformation of plant cells. Cell Biology International Reports, 1981, 5, 763.	0.6	0
205	Zinc Finger Artificial Transcription Factor-Mediated Chloroplast Genome Interrogation in Arabidopsis thaliana. Plant and Cell Physiology, 2019, 60, 393-406.	3.1	0
206	Gene Replacement. , 2013, , 167-183.		0
207	T-Region Transfer from Agrobacterium Tumefaciens to Plant Cells: Functional Characterization of Border Repeats. , 1986, , 203-214.		0