
Li-Fen Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7054331/publications.pdf Version: 2024-02-01

LI-FEN LIT

#	Article	lF	CITATIONS
1	Optimizing functional layer of cation exchange membrane by three-dimensional cross-linking quaternization for enhancing monovalent selectivity. Chinese Chemical Letters, 2022, 33, 2757-2762.	9.0	8
2	Hierarchical metal-phenolic-polyplex assembly toward superwetting membrane for high-flux and antifouling oil-water separation. Chinese Chemical Letters, 2022, 33, 3859-3864.	9.0	16
3	Structure adjustment for enhancing the water permeability and separation selectivity of the thin film composite nanofiltration membrane based on a dendritic hyperbranched polymer. Journal of Membrane Science, 2021, 618, 118455.	8.2	37
4	Surface modification of reverse osmosis membrane with tannic acid for improving chlorine resistance. Desalination, 2021, 498, 114639.	8.2	34
5	Engineering superwetting membranes through polyphenol-polycation-metal complexation for high-efficient oil/water separation: From polyphenol to tailored nanostructures. Journal of Membrane Science, 2021, 630, 119310.	8.2	50
6	Preparation of monovalent cation perm-selective membranes by controlling surface hydration energy barrier. Separation and Purification Technology, 2021, 270, 118768.	7.9	25
7	A rigid-flexible interpenetrating polyamide reverse osmosis membrane with improved antifouling property fabricated via two step modifications. Journal of Membrane Science, 2021, 637, 119625.	8.2	17
8	Polyphenol-engineered superwetting membranes with wrinkled microspherical organizations for high-efficient oil/water separation. Journal of Membrane Science, 2021, 640, 119813.	8.2	20
9	Surface modification of polyamide reverse osmosis membranes with small-molecule zwitterions for enhanced fouling resistance: a molecular simulation study. Physical Chemistry Chemical Physics, 2021, 23, 6623-6631.	2.8	7
10	Green Fabrication of Tertrabutylammonium Styrene Sulfonate Cation-Exchange Membranes via a Solvent-Free Photopolymerization Strategy. Industrial & Engineering Chemistry Research, 2021, 60, 17055-17064.	3.7	1
11	Diatom-Inspired TiO ₂ -PANi-Decorated Bilayer Photothermal Foam for Solar-Driven Clean Water Generation. ACS Applied Materials & Interfaces, 2021, 13, 58124-58133.	8.0	34
12	Combining tannic acid-modified support and a green co-solvent for high performance reverse osmosis membranes. Journal of Membrane Science, 2020, 595, 117474.	8.2	41
13	High flux reverse osmosis membranes fabricated with hyperbranched polymers via novel twice-crosslinked interfacial polymerization method. Journal of Membrane Science, 2020, 595, 117480.	8.2	27
14	Solvent activation before heat-treatment for improving reverse osmosis membrane performance. Journal of Membrane Science, 2020, 595, 117565.	8.2	35
15	Applications of tannic acid in membrane technologies: A review. Advances in Colloid and Interface Science, 2020, 284, 102267.	14.7	181
16	In situ metal-polyphenol interfacial assembly tailored superwetting PES/SPES/MPN membranes for oil-in-water emulsion separation. Journal of Membrane Science, 2020, 615, 118566.	8.2	81
17	<i>In silico</i> study of structure and water dynamics in CNT/polyamide nanocomposite reverse osmosis membranes. Physical Chemistry Chemical Physics, 2020, 22, 22324-22331.	2.8	6
18	Structure regulation for synergistically improving the permeation properties of the reverse osmosis membrane based on an amphiphilic hyperbranched polymer. Journal of Membrane Science, 2020, 608, 118143.	8.2	12

LI-FEN LIU

#	Article	IF	CITATIONS
19	Polyphenol-metal manipulated nanohybridization of CNT membranes with FeOOH nanorods for high-flux, antifouling and self-cleaning oil/water separation. Journal of Membrane Science, 2020, 600, 117857.	8.2	80
20	Superwetting Oil/Water Separation Membrane Constructed from In Situ Assembled Metal–Phenolic Networks and Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2020, 12, 10000-10008.	8.0	113
21	Molecular dynamics simulation studies of the structure and antifouling performance of a gradient polyamide membrane. Physical Chemistry Chemical Physics, 2019, 21, 19995-20002.	2.8	16
22	Amino-modified hollow mesoporous silica nanospheres-incorporated reverse osmosis membrane with high performance. Journal of Membrane Science, 2019, 581, 168-177.	8.2	57
23	Thin film nanocomposite reverse osmosis membrane incorporated with UiO-66 nanoparticles for enhanced boron removal. Journal of Membrane Science, 2019, 580, 101-109.	8.2	123
24	Modification of polyamide TFC nanofiltration membrane for improving separation and antifouling properties. RSC Advances, 2018, 8, 15102-15110.	3.6	42
25	Understanding the temperature effect on transport dynamics and structures in polyamide reverse osmosis system <i>via</i> molecular dynamics simulations. Physical Chemistry Chemical Physics, 2018, 20, 29996-30005.	2.8	20
26	Modification of poly(amide-urethane-imide) (PAUI) thin film composite reverse osmosis membrane with nano-silver particles. RSC Advances, 2018, 8, 37817-37827.	3.6	4
27	Metal-polyphenol coordination networks: Towards engineering of antifouling hybrid membranes via in situ assembly. Journal of Membrane Science, 2018, 563, 435-446.	8.2	42
28	Modification of Polyamide-Urethane (PAUt) Thin Film Composite Membrane for Improving the Reverse Osmosis Performance. Polymers, 2018, 10, 346.	4.5	4
29	Modification of PSf/SPSf Blended Porous Support for Improving the Reverse Osmosis Performance of Aromatic Polyamide Thin Film Composite Membranes. Polymers, 2018, 10, 686.	4.5	23
30	Functionalized Graphene Oxide Modified Polyethersulfone Membranes for Low-Pressure Anionic Dye/Salt Fractionation. Polymers, 2018, 10, 795.	4.5	15
31	Dopamine-induced biomimetic mineralization for in situ developing antifouling hybrid membrane. Journal of Membrane Science, 2018, 560, 47-57.	8.2	61
32	Recent developments in nanofiltration membranes based on nanomaterials. Chinese Journal of Chemical Engineering, 2017, 25, 1639-1652.	3.5	129
33	A novel semi-aromatic polyamide TFC reverse osmosis membrane fabricated from a dendritic molecule of trimesoylamidoamine through a two-step amine-immersion mode. RSC Advances, 2017, 7, 39127-39137.	3.6	16
34	Thin film composite membranes combining carbon nanotube intermediate layer and microfiltration support for high nanofiltration performances. Journal of Membrane Science, 2016, 515, 238-244.	8.2	239
35	Synthesis of quaternary ammonium hydroxide from its halide salt by bipolar membrane electrodialysis (<scp>BMED</scp>): effect of molecular structure of ammonium compounds on the process performance. Journal of Chemical Technology and Biotechnology, 2014, 89, 841-850.	3.2	17
36	Fabrication and characterization of a novel poly(amide-urethane@imide) TFC reverse osmosis membrane with chlorine-tolerant property. Journal of Membrane Science, 2014, 469, 397-409.	8.2	66

LI-FEN LIU

#	Article	IF	CITATIONS
37	Synthesis, characterization, and nonlinear optical responses of nickel(II) complexes with phenanthroline-based ligands. Journal of Coordination Chemistry, 2013, 66, 2388-2397.	2.2	10
38	Study on a novel antifouling polyamide–urea reverse osmosis composite membrane (ICIC–MPD)III. Analysis of membrane electrical properties. Journal of Membrane Science, 2008, 310, 119-128.	8.2	20
39	Study on a novel polyamide-urea reverse osmosis composite membrane (ICIC-MPD). Journal of Membrane Science, 2006, 283, 133-146.	8.2	46
40	Study on a novel polyamide-urea reverse osmosis composite membrane (ICIC–MPD)I. Preparation and characterization of ICIC–MPD membrane. Journal of Membrane Science, 2006, 281, 88-94.	8.2	58