Javier Rodriguez-Viejo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7053931/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	(CdSe)ZnS Coreâ^'Shell Quantum Dots:Â Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites. Journal of Physical Chemistry B, 1997, 101, 9463-9475.	2.6	3,916
2	Cathodoluminescence and photoluminescence of highly luminescent CdSe/ZnS quantum dot composites. Applied Physics Letters, 1997, 70, 2132-2134.	3.3	132
3	Stability of thin film glasses of toluene and ethylbenzene formed by vapor deposition: an in situ nanocalorimetric study. Physical Chemistry Chemical Physics, 2010, 12, 14693-14698.	2.8	119
4	Suppression of tunneling two-level systems in ultrastable glasses of indomethacin. Proceedings of the United States of America, 2014, 111, 11275-11280.	7.1	114
5	High-performance organic light-emitting diodes comprising ultrastable glass layers. Science Advances, 2018, 4, eaar8332.	10.3	113
6	Review on measurement techniques of transport properties of nanowires. Nanoscale, 2013, 5, 11526.	5.6	91
7	Temperature dependent thermal conductivity of polycrystalline ZnO films. Journal of Applied Physics, 2010, 107, .	2.5	74
8	180 diffusion through amorphous SiO2and cristobalite. Applied Physics Letters, 1993, 63, 1906-1908.	3.3	62
9	Evidence of photo- and electrodarkening of (CdSe)ZnS quantum dot composites. Journal of Applied Physics, 2000, 87, 8526-8534.	2.5	62
10	Glass transition in vapor deposited thin films of toluene. Thermochimica Acta, 2009, 492, 51-54.	2.7	62
11	Evidence of finite-size effect on the Néel temperature in ultrathin layers of CoO nanograins. Physical Review B, 2011, 83, .	3.2	60
12	Size-dependent melting and supercooling of Ge nanoparticles embedded in a SiO2 thin film. Thermochimica Acta, 2007, 461, 82-87.	2.7	56
13	Micropower thermoelectric generator from thin Si membranes. Nano Energy, 2014, 4, 73-80.	16.0	56
14	<i>In situ</i> nanocalorimetry of thin glassy organic films. Journal of Chemical Physics, 2008, 129, 181101.	3.0	54
15	Calorimetry of microbial growth using a thermopile based microreactor. Thermochimica Acta, 2005, 427, 187-191.	2.7	53
16	Sensitive power compensated scanning calorimeter for analysis of phase transformations in small samples. Review of Scientific Instruments, 2005, 76, 065104.	1.3	51
17	Size Effects and Extraordinary Stability of Ultrathin Vapor Deposited Glassy Films of Toluene. Journal of Physical Chemistry Letters, 2010, 1, 341-345.	4.6	50
18	Evaluation of Growth Front Velocity in Ultrastable Glasses of Indomethacin over a Wide Temperature Interval. Journal of Physical Chemistry B, 2014, 118, 10795-10801.	2.6	47

#	Article	IF	CITATIONS
19	Analytical expression for thermal conductivity of superlattices. Journal of Applied Physics, 2010, 107, .	2.5	46
20	Highly stable glasses of celecoxib: Influence on thermo-kinetic properties, microstructure and response towards crystal growth. Journal of Non-Crystalline Solids, 2015, 407, 256-261.	3.1	46
21	Zirconia-toughened hydroxyapatite ceramic obtained by wet sintering. Journal of Materials Science: Materials in Medicine, 1999, 10, 715-719.	3.6	41
22	Hydrogenation properties of pure magnesium and magnesium–aluminium thin films. Journal of Power Sources, 2007, 169, 117-122.	7.8	41
23	Transformation kinetics of vapor-deposited thin film organic glasses: the role of stability and molecular packing anisotropy. Physical Chemistry Chemical Physics, 2015, 17, 31195-31201.	2.8	41
24	Probing equilibrium glass flow up to exapoise viscosities. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2331-2336.	7.1	40
25	Accelerated Aging in Ultrathin Films of a Molecular Glass Former. Physical Review Letters, 2011, 107, 025901.	7.8	39
26	Heat transfer in symmetric U-shaped microreactors for thin film calorimetry. Journal of Micromechanics and Microengineering, 2006, 16, 965-971.	2.6	38
27	Power compensated thin film calorimetry at fast heating rates. Sensors and Actuators A: Physical, 2008, 143, 256-264.	4.1	38
28	Synthesis of CdSe quantum dot–ZnS matrix thin films via electrospray organometallic chemical vapor deposition. Journal of Crystal Growth, 1998, 195, 564-568.	1.5	37
29	Mechanisms driving primary crystallization of Al87Ni7Cu3Nd3 amorphous alloy. Acta Materialia, 2004, 52, 2819-2826.	7.9	35
30	Residual stress and texture in poly-SiC films grown by low-pressure organometallic chemical-vapor deposition. Journal of Applied Physics, 2000, 87, 1748-1758.	2.5	34
31	Beating Homogeneous Nucleation and Tuning Atomic Ordering in Glass-Forming Metals by Nanocalorimetry. Nano Letters, 2017, 17, 7751-7760.	9.1	34
32	Thermodynamic description of the Cuî—,O system. Journal of Alloys and Compounds, 2004, 377, 8-16.	5.5	33
33	Combinatorial Synthesis and Hydrogenation of Mg/Al Libraries Prepared by Electron Beam Physical Vapor Deposition. ACS Combinatorial Science, 2007, 9, 230-236.	3.3	33
34	Extension of the 3ï‰ method to measure the thermal conductivity of thin films without a reference sample. Sensors and Actuators A: Physical, 2008, 142, 232-236.	4.1	33
35	Glass transition in ultrathin films of amorphous solid water. Journal of Chemical Physics, 2012, 137, 244506.	3.0	33
36	Anomalous Transformation of Vapor-Deposited Highly Stable Glasses of Toluene into Mixed Glassy States by Annealing Above <i>T</i> _g . Journal of Physical Chemistry Letters, 2012, 3, 919-923.	4.6	33

#	Article	IF	CITATIONS
37	In-plane thermal conductivity of sub-20 nm thick suspended mono-crystalline Si layers. Nanotechnology, 2014, 25, 185402.	2.6	31
38	Tailoring thermal conductivity by engineering compositional gradients in Si1â^'x Ge x superlattices. Nano Research, 2015, 8, 2833-2841.	10.4	31
39	Effect of minor additions on the glass forming ability and magnetic properties of Fe–Nb–B based metallic glasses. Intermetallics, 2010, 18, 773-780.	3.9	30
40	The role of thermodynamic stability in the characteristics of the devitrification front of vapour-deposited glasses of toluene. Physical Chemistry Chemical Physics, 2017, 19, 11089-11097.	2.8	29
41	Relaxation dynamics of glasses along a wide stability and temperature range. Scientific Reports, 2016, 6, 35607.	3.3	28
42	Microstructure evolution and grain size distribution in nanocrystalline FeNbBCu from synchrotron XRD and TEM analysis. Journal of Non-Crystalline Solids, 2012, 358, 107-113.	3.1	27
43	Growth of SiC films obtained by LPCVD. Diamond and Related Materials, 1997, 6, 1306-1310.	3.9	26
44	Ultrastable glasses: new perspectives for an old problem. Rivista Del Nuovo Cimento, 2022, 45, 325-406.	5.7	26
45	Kinetics and crystallization studies by in situ X-ray diffraction of the oxidation of chemically vapour deposited SiC. Thin Solid Films, 1991, 204, 217-227.	1.8	25
46	Nanocrystallization kinetics and glass forming ability of theFe65Nb10B25metallic alloy. Physical Review B, 2007, 76, .	3.2	25
47	Nanocalorimetric analysis of the ferromagnetic transition in ultrathin films of nickel. Applied Physics Letters, 2008, 92, .	3.3	25
48	Cross-plane thermal conductivity reduction of vertically uncorrelated Geâ^•Si quantum dot superlattices. Applied Physics Letters, 2008, 93, .	3.3	24
49	Structural and magnetic characterization of FeNbBCu alloys as a function of Nb content. Journal Physics D: Applied Physics, 2009, 42, 095010.	2.8	24
50	AES study of the SiO2/SiC interface in the oxidation of CVD Î ² -SiC. Surface Science, 1992, 271, 237-243.	1.9	23
51	Design issues involved in the development of a membrane-based high-temperature nanocalorimeter. Microelectronic Engineering, 2007, 84, 1288-1291.	2.4	22
52	Distinguishing different classes of secondary relaxations from vapour deposited ultrastable glasses. Physical Chemistry Chemical Physics, 2018, 20, 21925-21933.	2.8	21
53	Formation of Pd2Si on single-crystalline Si (100) at ultrafast heating rates: An <i>in-situ</i> analysis by nanocalorimetry. Applied Physics Letters, 2013, 102, .	3.3	20
54	High-temperature oxidation of CVD β-SiC part I. Experimental study. Journal of the European Ceramic Society, 1994, 13, 167-175.	5.7	19

JAVIER RODRIGUEZ-VIEJO

#	Article	IF	CITATIONS
55	Fabrication, characterization and modeling of single-crystal thin film calorimeter sensors. Thermochimica Acta, 2010, 510, 126-136.	2.7	19
56	Effect of minor Co additions on the crystallization and magnetic properties of Fe(Co)NbBCu alloys. Journal of Alloys and Compounds, 2010, 496, 202-207.	5.5	19
57	Secondary relaxation in ultrastable etoricoxib: evidence of correlation with structural relaxation. Physical Chemistry Chemical Physics, 2018, 20, 3939-3945.	2.8	19
58	Kinetic arrest of front transformation to gain access to the bulk glass transition in ultrathin films of vapour-deposited glasses. Physical Chemistry Chemical Physics, 2018, 20, 29989-29995.	2.8	19
59	Nucleation and Growth of the Supercooled Liquid Phase Control Glass Transition in Bulk Ultrastable Glasses. Physical Review Letters, 2020, 124, 076002.	7.8	19
60	Influence of composition in the crystallization process of Fe75â^'xNb10B15+x metallic glasses. Journal of Non-Crystalline Solids, 2007, 353, 842-844.	3.1	18
61	Evidence of thermal transport anisotropy in stable glasses of vapor deposited organic molecules. Physical Review Materials, 2018, 2, .	2.4	17
62	High-temperature oxidation of CVD β-SiC part II. Relation between oxygen diffusion coefficients and parabolic rate constants. Journal of the European Ceramic Society, 1994, 13, 177-184.	5.7	16
63	Growth morphology of low-pressure metalorganic chemical vapor deposition silicon carbide on substrates. Journal of Crystal Growth, 1995, 155, 214-222.	1.5	16
64	Thermal conductivity of thin single-crystalline germanium-on-insulator structures. International Journal of Heat and Mass Transfer, 2011, 54, 1959-1962.	4.8	16
65	Impact of pore anisotropy on the thermal conductivity of porous Si nanowires. Scientific Reports, 2018, 8, 12796.	3.3	16
66	Surface-Bulk Interplay in Vapor-Deposited Glasses: Crossover Length and the Origin of Front Transformation. Physical Review Letters, 2019, 123, 155501.	7.8	16
67	Interfacial effects on the thermal conductivity of a-Ge thin films grown on Si substrates. Journal of Applied Physics, 2008, 104, .	2.5	15
68	Ultra-Low Thermal Conductivity in Nanoscale Layered Oxides. Journal of Heat Transfer, 2010, 132, .	2.1	15
69	A Generalized Approach for Evaluating the Mechanical Properties of Polymer Nanocomposites Reinforced with Spherical Fillers. Nanomaterials, 2021, 11, 830.	4.1	15
70	Nanocalorimetric high-temperature characterization of ultrathin films of a-Ge. Materials Science in Semiconductor Processing, 2006, 9, 806-811.	4.0	14
71	Bulk soft magnetic materials from ball-milled Fe77Nb7B15Cu1 amorphous ribbons. Intermetallics, 2009, 17, 79-85.	3.9	14
72	Using high pressure to unravel the mechanism of visible emission in amorphous Si/SiOxnanoparticles. Physical Review B, 2014, 89, .	3.2	14

5

Javier Rodriguez-Viejo

#	Article	IF	CITATIONS
73	Ultrastable glasses portray similar behaviour to ordinary glasses at high pressure. Scientific Reports, 2016, 6, 34296.	3.3	14
74	Effect of Nb in the nanocrystallization and magnetic properties of FeNbBCu amorphous alloys. Journal of Non-Crystalline Solids, 2008, 354, 5110-5112.	3.1	13
75	Isokinetic analysis of nanocrystallization in an Al–Nd–Ni amorphous alloy. Journal of Physics Condensed Matter, 2005, 17, 4897-4910.	1.8	12
76	Acoustic-like dynamics of amorphous drugs in the THz regime. Scientific Reports, 2013, 3, 2518.	3.3	12
77	Kinetics of silicide formation over a wide range of heating rates spanning six orders of magnitude. Applied Physics Letters, 2014, 105, .	3.3	12
78	Neutron diffraction and calorimetric study on Al-based metallic glasses. Journal of Non-Crystalline Solids, 2001, 287, 162-166.	3.1	11
79	Time resolved x-ray reflectivity study of interfacial reactions inCuâ^•Mgthin films during heat treatment. Physical Review B, 2007, 75, .	3.2	11
80	Crystallisation of Amorphous Germanium Thin Films. Journal of Nanoscience and Nanotechnology, 2009, 9, 3013-3019.	0.9	11
81	Ellipsometric study of crystallization of amorphous Ge thin films embedded in SiO2. Thin Solid Films, 2008, 516, 4277-4281.	1.8	10
82	Mechanical Behaviour of New Zirconia-Hydroxyapatite Ceramic Materials. Key Engineering Materials, 2001, 192-195, 151-154.	0.4	9
83	Measuring Device and Material ZT in a Thin-Film Si-Based Thermoelectric Microgenerator. Nanomaterials, 2019, 9, 653.	4.1	9
84	Beating the Thermal Conductivity Alloy Limit Using Long-Period Compositionally Graded Si _{1–<i>x</i>} Ge <i>_x</i> Superlattices. Journal of Physical Chemistry C, 2020, 124, 19864-19872.	3.1	9
85	Evaluation of the liquid–solid interfacial energy from crystallization kinetic data. Scripta Materialia, 2009, 61, 879-882.	5.2	8
86	Simultaneous nanocalorimetry and fast XRD measurements to study the silicide formation in Pd/a-Si bilayers. Journal of Synchrotron Radiation, 2015, 22, 717-722.	2.4	7
87	Emergence of a substrate-temperature-dependent dielectric process in a prototypical vapor deposited hole-transport glass. Scientific Reports, 2018, 8, 1380.	3.3	7
88	Bridging the local configurations and crystalline counterparts of bulk metallic glass by nanocalorimetry. Journal of Materials Research and Technology, 2019, 8, 3603-3611.	5.8	7
89	Microchip power compensated calorimetry applied to metal hydride characterization. International Journal of Hydrogen Energy, 2008, 33, 2729-2737.	7.1	6
90	Vanadium-doped zinc oxide films for piezoelectric application. Nanomaterials and Energy, 2015, 4, 109-117.	0.2	6

JAVIER RODRIGUEZ-VIEJO

#	Article	IF	CITATIONS
91	Calorimetric and x-ray analysis of the intermediate phase formation in Cu/Mg multilayers. Journal of Applied Physics, 2003, 93, 4447-4453.	2.5	5
92	Calorimetric evidence of asymmetry in the nucleation ofCuMg2in Cu/Mg multilayers. Physical Review B, 2004, 69, .	3.2	5
93	Influence of layer microstructure on the double nucleation process in Cuâ^•Mg multilayers. Journal of Applied Physics, 2006, 100, 113522.	2.5	5
94	Structure and thermomagnetic properties of powders produced from melt spun FeNbBCu ribbons. Journal of Non-Crystalline Solids, 2008, 354, 3858-3863.	3.1	5
95	Ellipsometric measurements of quantum confinement effects on higher interband transitions of Ge nanocrystals. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 888-891.	1.8	4
96	Infrared imaging tool for screening catalyst effect on hydrogen storing thin film libraries. Catalysis Today, 2011, 159, 144-149.	4.4	4
97	Do tunneling states and boson peak persist or disappear in extremely stabilized glasses?. Low Temperature Physics, 2015, 41, 412-418.	0.6	4
98	Comprehensive characterization of thermophysical properties in solids using thermal impedance. Journal of Applied Physics, 2012, 112, .	2.5	3
99	Multiple glass transitions in vapor-deposited orientational glasses of the most fragile plastic crystal Freon 113. Physical Chemistry Chemical Physics, 2019, 21, 10436-10441.	2.8	3
100	Synthesis of CdSe/ZnS Quantum Dot Composites for Electroluminescent Devices. Materials Research Society Symposia Proceedings, 1996, 424, 477.	0.1	2
101	Primary Transformation Rate Measurements Through Differential Scanning Calorimetry. Monatshefte Für Chemie, 2005, 136, 1947-1953.	1.8	2
102	Primary crystallization in Fe65Nb10B25 metallic glass. Journal of Non-Crystalline Solids, 2008, 354, 5120-5122.	3.1	2
103	In situ infrared thermographic screening of compositional spread Mg–Ti thin-film libraries. Journal of Alloys and Compounds, 2011, 509, 6497-6501.	5.5	2
104	Reduction of the deposition temperature of high quality EuO films on Yttria Stabilized Zirconia by incorporating an MgO buffer layer. Thin Solid Films, 2013, 531, 466-470.	1.8	2
105	Quasi-adiabatic, Membrane-Based, Highly Sensitive Fast Scanning Nanocalorimetry. , 2016, , 105-149.		2
106	Synthesis and Characterization of Highly Luminescent (CdSe)ZnS Quantum Dots. Materials Research Society Symposia Proceedings, 1996, 452, 359.	0.1	1
107	Cathodoluminescence of CdSe/ZnS Quantum Dot Composites. Materials Research Society Symposia Proceedings, 1996, 452, 365.	0.1	1
108	<title>Electroluminescence and cathodoluminescence from inorganic CdSe nanocrystals embedded in thin films</title> . , 1998, , .		1

Javier Rodriguez-Viejo

#	Article	IF	CITATIONS
109	Stress in Poly-SiC Films Grown by Low Pressure CVD. Materials Science Forum, 2000, 347-349, 477-485.	0.3	1
110	Physical and Mechanical Behavior of Zirconia-Hydroxyapatite Ceramics after Aging in Simulated Body Fluid. Key Engineering Materials, 2002, 218-220, 161-164.	0.4	1
111	Devitrification process in rapidly solidified Al-Ni-Cu-Nd metallic glass. Central South University, 2003, 10, 163-167.	0.5	1
112	Spectroscopic ellipsometry studies on polycrystalline Cd0.9Zn0.1Te thin films. Physica Status Solidi A, 2004, 201, 782-790.	1.7	1
113	Hyperfine Field Distributions during Nanocrystallization in Fe65Nb10B25. AIP Conference Proceedings, 2005, , .	0.4	1
114	Growth Monitoring With Submonolayer Sensitivity Via Real-Time Thermal-Conductance Measurements. Physical Review Applied, 2019, 12, .	3.8	1
115	Thermoelectric Photosensor Based on Ultrathin Single-Crystalline Si Films â€. Sensors, 2019, 19, 1427.	3.8	1
116	Growth and Stress Characterization of LPCVD SiC Films Deposited on Bare, Carbonized and Oxidized Si(001) Substrates. Materials Research Society Symposia Proceedings, 1998, 555, 173.	0.1	0
117	Microreactors for Thin-Film Calorimetry. Materials Research Society Symposia Proceedings, 2002, 741, 241.	0.1	0
118	Thermal characterization and modeling of intermediate phase formation in 20/80 nm and 10/20 nm Cu/Mg multilayers. Materials Research Society Symposia Proceedings, 2002, 749, 1.	0.1	0
119	Glass forming ability and nanocrystallization kinetics of Fe65Nb10B25 metallic glasses. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 1114-1117.	1.8	Ο
120	Preface: Phys. Status Solidi C 11-12/2011. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 3036-3037.	0.8	0
121	Thermoelectric Microsensor Based on Ultrathin Si Films. Proceedings (mdpi), 2018, 2, .	0.2	Ο
122	Dynamical X-ray diffraction analysis of Solid Phase Epitaxy growth of Si1-yCy heterostructures. Materials Research Society Symposia Proceedings, 2000, 647, 1.	0.1	0
123	Nucleation behavior during the first stages of SiC growth on different substrates. European Physical Journal Special Topics, 1999, 09, Pr8-1069-Pr8-1074.	0.2	0