Arindam Dhali

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7053750/publications.pdf

Version: 2024-02-01

1040056 940533 22 282 9 16 citations h-index g-index papers 22 22 22 329 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Tagatose as a Potential Nutraceutical: Production, Properties, Biological Roles, and Applications. Journal of Food Science, 2018, 83, 2699-2709.	3.1	56
2	Secretion Patterns of Growth Hormone in Growing Captive Mithuns (Bos frontalis). Zoological Science, 2004, 21, 1125-1129.	0.7	32
3	Production of Short Chain Fructo-oligosaccharides from Inulin of Chicory Root Using Fungal Endoinulinase. Applied Biochemistry and Biotechnology, 2020, 191, 695-715.	2.9	28
4	An Efficient Nitroblue Tetrazolium Staining and Bright-Field Microscopy Based Method for Detecting and Quantifying Intracellular Reactive Oxygen Species in Oocytes, Cumulus Cells and Embryos. Frontiers in Cell and Developmental Biology, 2020, 8, 764.	3.7	24
5	Temporal expression of cumulus cell marker genes during in vitro maturation and oocyte developmental competence. Journal of Assisted Reproduction and Genetics, 2017, 34, 1493-1500.	2.5	23
6	Interleukin-7 improves in vitro maturation of ovine cumulus-oocyte complexes in a dose dependent manner. Cytokine, 2019, 113, 296-304.	3.2	16
7	IGF-1 treatment during inÂvitro maturation improves developmental potential of ovine oocytes through the regulation of PI3K/Akt and apoptosis signaling. Animal Biotechnology, 2020, 32, 1-8.	1.5	16
8	Development and Validation of a Simple, Sensitive, Second Antibody Format Enzyme Immunoassay (EIA) for LH Determination in Mithun (<i>Bos Frontalis</i>) Plasma. Journal of Immunoassay and Immunochemistry, 2005, 26, 157-167.	1.1	14
9	Vitrification of bovine oocytes: implications of follicular size and sire on the rates of embryonic development. Journal of Assisted Reproduction and Genetics, 2009, 26, 613-619.	2.5	13
10	Effect of tamarind seed husk supplementation on ruminal methanogenesis, methanogen diversity and fermentation characteristics. Carbon Management, 2017, 8, 319-329.	2.4	11
11	Influence of plasma estradiol 17- \hat{I}^2 and progesterone levels on estrous behaviour in mithun (Bos) Tj ETQq $1\ 1\ 0.7$	843 <u>1</u> ,4 rgB	T /Overlock 1
12	Methane mitigation potential of phyto-sources from Northeast India and their effect on rumen fermentation characteristics and protozoa in vitro. Veterinary World, 2018, 11, 809-818.	1.7	9
13	In Silico evaluation and identification of fungi capable of producing endo-inulinase enzyme. PLoS ONE, 2018, 13, e0200607.	2.5	9
14	Rumen methane amelioration in sheep using two selected tanniferous phyto-leaves. Carbon Management, 2019, 10, 299-308.	2.4	7
15	Seasonal variations in quality, preservability and fertilizing ability of ovine spermatozoa. Biological Rhythm Research, 2020, 51, 951-962.	0.9	3
16	<i>In vitro</i> assessment of antimicrobial efficacy of the Dâ€tagatose and lactobacilliâ€based synbiotic preparations against the pathogenic <i>Escherichia coli</i> and <i>Salmonella typhimurium</i> lnternational Journal of Food Science and Technology, 2021, 56, 2156-2165.	2.7	3
17	Low oxygen tension activates glucose metabolism, improves antioxidant capacity and augment developmental potential of ovine embryos in vitro. Animal Production Science, 2020, 60, 503.	1.3	2
18	Interaction of apoptosis and pluripotency related transcripts for developmental potential of ovine embryos producedinÂvitroat different oxygen concentrations. Animal Biotechnology, 2020, 32, 1-9.	1.5	2

#	Article	IF	CITATIONS
19	Reduced cytochrome oxidase activity and increased protein tyrosine phosphorylation of mitochondria-rich fractions of buffalo (Bubalus bubalis) spermatozoa after a cycle of freezing and thawing. Reproduction, Fertility and Development, 2019, 31, 1567.	0.4	2
20	Sexing of preâ€implantation ovine embryos through polymerase chain reactionâ€based amplification of GAPDH, SRY and AMEL genes. Reproduction in Domestic Animals, 2020, 55, 885-892.	1.4	1
21	Value addition of cotton stalks through enzymatic production of xylooligosaccharides. International Journal of Environment and Waste Management, 2020, 25, 1.	0.3	1
22	In vitro production of desired sex ovine embryos modulating polarity of oocytes for sex-specific sperm binding during fertilization. Scientific Reports, 2022, 12, 5845.	3.3	0