Simon Billinge

List of Publications by Citations

Source: https://exaly.com/author-pdf/7053578/simon-billinge-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 220
 14,441
 58
 116

 papers
 citations
 h-index
 g-index

 241
 16,486
 8
 6.65

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
220	PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals. <i>Journal of Physics Condensed Matter</i> , 2007 , 19, 335219	1.8	962
219	PDFgetX2: a GUI-driven program to obtain the pair distribution function from X-ray powder diffraction data. <i>Journal of Applied Crystallography</i> , 2004 , 37, 678-678	3.8	765
218	Structures of the ferroelectric phases of barium titanate. <i>The Journal of Physical Chemistry</i> , 1993 , 97, 2368-2377		529
217	The problem with determining atomic structure at the nanoscale. <i>Science</i> , 2007 , 316, 561-5	33.3	525
216	Rapid-acquisition pair distribution function (RA-PDF) analysis. <i>Journal of Applied Crystallography</i> , 2003 , 36, 1342-1347	3.8	433
215	Direct Observation of Lattice Polaron Formation in the Local Structure of La1-xCaxMnO3. <i>Physical Review Letters</i> , 1996 , 77, 715-718	7.4	388
214	Beyond crystallography: the study of disorder, nanocrystallinity and crystallographically challenged materials with pair distribution functions. <i>Chemical Communications</i> , 2004 , 749-60	5.8	364
213	Structure of $V(2)O(5)*nH(2)O$ xerogel solved by the atomic pair distribution function technique. Journal of the American Chemical Society, 2002 , 124, 10157-62	16.4	358
212	PDFFIT, a program for full profile structural refinement of the atomic pair distribution function. <i>Journal of Applied Crystallography</i> , 1999 , 32, 572-575	3.8	357
211	Synthesis and characterization of two-dimensional Nb4C3 (MXene). <i>Chemical Communications</i> , 2014 , 50, 9517-20	5.8	321
2 10	Textural Mesoporosity and the Catalytic Activity of Mesoporous Molecular Sieves with Wormhole Framework Structures. <i>Journal of the American Chemical Society</i> , 1999 , 121, 8835-8842	16.4	308
209	Nature of Activated Manganese Oxide for Oxygen Evolution. <i>Journal of the American Chemical Society</i> , 2015 , 137, 14887-904	16.4	295
208	Structure of methylammonium lead iodide within mesoporous titanium dioxide: active material in high-performance perovskite solar cells. <i>Nano Letters</i> , 2014 , 14, 127-33	11.5	258
207	Entropically stabilized local dipole formation in lead chalcogenides. <i>Science</i> , 2010 , 330, 1660-3	33.3	254
206	Control of electronic properties of 2D carbides (MXenes) by manipulating their transition metal layers. <i>Nanoscale Horizons</i> , 2016 , 1, 227-234	10.8	242
205	PDFgetN: a user-friendly program to extract the total scattering structure factor and the pair distribution function from neutron powder diffraction data. <i>Journal of Applied Crystallography</i> , 2000 , 33, 1192-1192	3.8	233
204	2D molybdenum and vanadium nitrides synthesized by ammoniation of 2D transition metal carbides (MXenes). <i>Nanoscale</i> , 2017 , 9, 17722-17730	7.7	192

(2016-2003)

203	Structural analysis of complex materials using the atomic pair distribution function b practical guide. <i>Zeitschrift Fur Kristallographie - Crystalline Materials</i> , 2003 , 218, 132-143	1	182
202	Coherent Nanotwins and Dynamic Disorder in Cesium Lead Halide Perovskite Nanocrystals. <i>ACS Nano</i> , 2017 , 11, 3819-3831	16.7	181
201	Direct Observation of Dynamic Symmetry Breaking above Room Temperature in Methylammonium Lead Iodide Perovskite. <i>ACS Energy Letters</i> , 2016 , 1, 880-887	20.1	177
200	Two-Step Nucleation and Growth of InP Quantum Dots via Magic-Sized Cluster Intermediates. <i>Chemistry of Materials</i> , 2015 , 27, 1432-1441	9.6	176
199	Quantitative size-dependent structure and strain determination of CdSe nanoparticles using atomic pair distribution function analysis. <i>Physical Review B</i> , 2007 , 76,	3.3	160
198	Complex modeling: a strategy and software program for combining multiple information sources to solve ill posed structure and nanostructure inverse problems. <i>Acta Crystallographica Section A: Foundations and Advances</i> , 2015 , 71, 562-8	1.7	152
197	Revealing the mechanisms behind SnO2 nanoparticle formation and growth during hydrothermal synthesis: an in situ total scattering study. <i>Journal of the American Chemical Society</i> , 2012 , 134, 6785-92	16.4	150
196	Imaging Dirac-mass disorder from magnetic dopant atoms in the ferromagnetic topological insulator Crx(Bi0.1Sb0.9)2-xTe3. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 1316-21	11.5	147
195	Ab initio determination of solid-state nanostructure. <i>Nature</i> , 2006 , 440, 655-8	50.4	146
194	Atomic structures and gram scale synthesis of three tetrahedral quantum dots. <i>Journal of the American Chemical Society</i> , 2014 , 136, 10645-53	16.4	139
193	Structure of nanocrystalline materials using atomic pair distribution function analysis: Study of LiMoS2. <i>Physical Review B</i> , 2002 , 65,	3.3	139
192	Intermediate-range structure of self-assembled cobalt-based oxygen-evolving catalyst. <i>Journal of the American Chemical Society</i> , 2013 , 135, 6403-6	16.4	138
191	Relationship between the atomic pair distribution function and small-angle scattering: implications for modeling of nanoparticles. <i>Acta Crystallographica Section A: Foundations and Advances</i> , 2009 , 65, 232	2-9	138
190	Polyhedral units and network connectivity in calcium aluminosilicate glasses from high-energy X-Ray diffraction. <i>Physical Review Letters</i> , 2000 , 85, 3436-9	7.4	138
189	Neutron diffraction evidence of microscopic charge inhomogeneities in the CuO2 plane of superconducting La2-xSrxCuO4 (0. <i>Physical Review Letters</i> , 2000 , 84, 5856-9	7.4	138
188	Orbital correlations in the pseudocubic O and rhombohedral R phases of LaMnO3. <i>Physical Review Letters</i> , 2005 , 94, 177203	7.4	135
187	Structure of nanocrystalline Ti3C2 MXene using atomic pair distribution function. <i>Physical Review Letters</i> , 2014 , 112, 125501	7.4	129
186	Atomic electron tomography: 3D structures without crystals. <i>Science</i> , 2016 , 353,	33.3	129

185	Polymorphism in magic-sized Au144(SR)60 clusters. <i>Nature Communications</i> , 2016 , 7, 11859	17.4	126
184	Mercury binding sites in thiol-functionalized mesostructured silica. <i>Journal of the American Chemical Society</i> , 2005 , 127, 8492-8	16.4	118
183	Measuring Correlated Atomic Motion Using X-ray Diffraction. <i>Journal of Physical Chemistry A</i> , 1999 , 103, 921-924	2.8	114
182	High Real-Space Resolution Measurement of the Local Structure of Ga1⊠InxAs Using X-Ray Diffraction. <i>Physical Review Letters</i> , 1999 , 83, 4089-4092	7.4	113
181	Lattice dynamics and correlated atomic motion from the atomic pair distribution function. <i>Physical Review B</i> , 2003 , 67,	3.3	105
180	Local structure of nanoporous carbons. <i>The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties</i> , 1999 , 79, 1519-1530		96
179	Fine-Scale Nanostructure in EAl2O3. Chemistry of Materials, 2006, 18, 3242-3248	9.6	88
178	Improved measures of quality for the atomic pair distribution function. <i>Journal of Applied Crystallography</i> , 2003 , 36, 53-64	3.8	84
177	Role of framework sodium versus local framework structure in determining the hydrothermal stability of MCM-41 mesostructures. <i>Journal of the American Chemical Society</i> , 2002 , 124, 97-103	16.4	82
176	Application of Atomic Pair Distribution Function Analysis to Materials with Intrinsic Disorder. Three-Dimensional Structure of Exfoliated-Restacked WS2: Not Just a Random Turbostratic Assembly of Layers. <i>Journal of the American Chemical Society</i> , 2000 , 122, 11571-11576	16.4	82
175	Understanding the formation and evolution of ceria nanoparticles under hydrothermal conditions. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 9030-3	16.4	78
174	Reciprocal-space instrumental effects on the real-space neutron atomic pair distribution function. <i>Journal of Applied Crystallography</i> , 2004 , 37, 110-116	3.8	78
173	Simulation of nanoporous carbons: A chemically constrained structure. <i>The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties</i> , 1999 , 79, 1499-1518		76
172	Local vibrations and negative thermal expansion in ZrW2O8. <i>Physical Review Letters</i> , 2014 , 112, 045505	7.4	75
171	Pair distribution function computed tomography. <i>Nature Communications</i> , 2013 , 4, 2536	17.4	75
170	Characterisation of amorphous and nanocrystalline molecular materials by total scattering. <i>CrystEngComm</i> , 2010 , 12, 1366-1368	3.3	66
169	Structure of Sulfate Adsorption Complexes on Ferrihydrite. <i>Environmental Science and Technology Letters</i> , 2014 , 1, 97-101	11	65
168	Mechanisms for iron oxide formation under hydrothermal conditions: an in situ total scattering study. <i>ACS Nano</i> , 2014 , 8, 10704-14	16.7	65

(2004-2017)

167	Signatures of the topological s superconducting order parameter in the type-II Weyl semimetal T -MoTe. <i>Nature Communications</i> , 2017 , 8, 1082	17.4	62
166	Correlating Size and Composition-Dependent Effects with Magnetic, MBsbauer, and Pair Distribution Function Measurements in a Family of Catalytically Active Ferrite Nanoparticles. <i>Chemistry of Materials</i> , 2015 , 27, 3572-3592	9.6	61
165	Data requirements for the reliable use of atomic pair distribution functions in amorphous pharmaceutical fingerprinting. <i>Pharmaceutical Research</i> , 2011 , 28, 1041-8	4.5	60
164	Rapid desolvation-triggered domino lattice rearrangement in a metal-organic framework. <i>Nature Chemistry</i> , 2020 , 12, 90-97	17.6	60
163	Two-Dimensional Arrays of Transition Metal Nitride Nanocrystals. <i>Advanced Materials</i> , 2019 , 31, e19023	3 <u>9</u> 23 ₄	59
162	Local off-centering symmetry breaking in the high-temperature regime of SnTe. <i>Physical Review B</i> , 2014 , 89,	3.3	58
161	Structure of intercalated Cs in zeolite ITQ-4: an array of metal ions and correlated electrons confined in a pseudo-1D nanoporous host. <i>Physical Review Letters</i> , 2002 , 89, 075502	7.4	58
160	Study of Local Structure in Selected OrganicIhorganic Perovskites in the Pm3 m Phase. <i>Chemistry of Materials</i> , 2008 , 20, 1272-1277	9.6	57
159	Tuning the Surface Structure and Optical Properties of CdSe Clusters Using Coordination Chemistry. <i>Journal of Physical Chemistry Letters</i> , 2011 , 2, 3075-3080	6.4	56
158	Search for a structural response to the intermediate phase in GexSe1\(\mathbb{Q}\) glasses. <i>Physical Review B</i> , 2008 , 77,	3.3	56
157	Magnetism in semiconducting molybdenum dichalcogenides. Science Advances, 2018, 4, eaat3672	14.3	56
156	Synthesis, crystal structure, and magnetism of Fe1.00(2)Se1.00(3) single crystals. <i>Physical Review B</i> , 2011 , 83,	3.3	55
155	Confirmation of disordered structure of ultrasmall CdSe nanoparticles from X-ray atomic pair distribution function analysis. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 8480-6	3.6	54
154	Probing local and long-range structure simultaneously: an in situ study of the high-temperature phase transition of alpha-AlF3. <i>Journal of the American Chemical Society</i> , 2004 , 126, 4756-7	16.4	50
153	The rise of the X-ray atomic pair distribution function method: a series of fortunate events. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2019 , 377, 2018047	13	49
152	Cation Exchange Induced Transformation of InP Magic-Sized Clusters. <i>Chemistry of Materials</i> , 2017 , 29, 7984-7992	9.6	49
151	Nanoscale disorder and local electronic properties of CaCu3Ti4O12: An integrated study of electron, neutron, and x-ray diffraction, x-ray absorption fine structure, and first-principles calculations. <i>Physical Review B</i> , 2010 , 81,	3.3	49
150	The atomic pair distribution function: past and present. Zeitschrift Fur Kristallographie - Crystalline Materials, 2004, 219,	1	49

149	Nyquist-Shannon sampling theorem applied to refinements of the atomic pair distribution function. <i>Physical Review B</i> , 2011 , 84,	3.3	46
148	Tiopronin gold nanoparticle precursor forms aurophilic ring tetramer. <i>Inorganic Chemistry</i> , 2010 , 49, 10	8 <u>5</u> 8-66	42
147	Local and average structures of the spin-glass pyrochlore Y2Mo2O7 from neutron diffraction and neutron pair distribution function analysis. <i>Physical Review B</i> , 2009 , 79,	3.3	42
146	Superconducting order from disorder in 2H-TaSe 2lk S x. <i>Npj Quantum Materials</i> , 2017 , 2,	5	41
145	Demonstration of thin film pair distribution function analysis (tfPDF) for the study of local structure in amorphous and crystalline thin films. <i>IUCrJ</i> , 2015 , 2, 481-9	4.7	41
144	Early stage structural development of prototypical zeolitic imidazolate framework (ZIF) in solution. <i>Nanoscale</i> , 2018 , 10, 4291-4300	7.7	40
143	Lattice dynamics reveals a local symmetry breaking in the emergent dipole phase of PbTe. <i>Physical Review B</i> , 2012 , 86,	3.3	40
142	X-Ray Diffraction Computed Tomography for Structural Analysis of Electrode Materials in Batteries. Journal of the Electrochemical Society, 2015 , 162, A1310-A1314	3.9	39
141	Evolution of atomic structure during nanoparticle formation. <i>IUCrJ</i> , 2014 , 1, 165-71	4.7	39
140	Structures of alkali metals in silica gel nanopores: new materials for chemical reductions and hydrogen production. <i>Journal of the American Chemical Society</i> , 2007 , 129, 1386-92	16.4	39
139	Charge Density Wave Caused by Reducing ThSe3 by One Electron. Superstructure and Short-Range Order in ATh2Se6 (A = K, Rb) Studied by X-ray Diffraction, Electron Diffraction, and Diffuse Scattering. <i>Journal of the American Chemical Society</i> , 1998 , 120, 10706-10714	16.4	38
138	Scalable Synthesis of Ultrathin Mn3N2 Exhibiting Room-Temperature Antiferromagnetism. <i>Advanced Functional Materials</i> , 2019 , 29, 1809001	15.6	37
137	Modelling pair distribution functions (PDFs) of organic compounds: describing both intra- and intermolecular correlation functions in calculated PDFs. <i>Journal of Applied Crystallography</i> , 2015 , 48, 171-178	3.8	37
136	Seeking Supersolidity in Helium Layers. <i>Physics Magazine</i> , 2010 , 3,	1.1	36
135	Mesostructured Non-Oxidic Solids with Adjustable Worm-hole Shaped Pores: M-Ge-Q (Q=S, Se) Frameworks Based on Tetrahedral [Ge4Q10]4[Clusters. <i>Advanced Materials</i> , 2000 , 12, 85-91	24	36
134	Neutron Scattering Studies of Compositional Heterogeneity in Sol © el Processed Lead Zirconate Titanates. <i>Chemistry of Materials</i> , 1998 , 10, 3611-3619	9.6	36
133	Magnetic pair distribution function analysis of local magnetic correlations. <i>Acta Crystallographica Section A: Foundations and Advances</i> , 2014 , 70, 3-11	1.7	35
132	Assigned and unassigned distance geometry: applications to biological molecules and nanostructures. <i>4or</i> , 2016 , 14, 337-376	1.4	34

131	Quantitative nanostructure characterization using atomic pair distribution functions obtained from laboratory electron microscopes. <i>Zeitschrift Fl Kristallographie</i> , 2012 , 227, 248-256		32
130	Proton E lectron Conductivity in Thin Films of a Cobalt D xygen Evolving Catalyst. <i>ACS Applied Energy Materials</i> , 2019 , 2, 3-12	6.1	30
129	Detection and characterization of nanoparticles in suspension at low concentrations using the X-ray total scattering pair distribution function technique. <i>Nanoscale</i> , 2015 , 7, 5480-7	7.7	30
128	Stabilization of reactive CoO cubane oxygen-evolution catalysts within porous frameworks. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11630-11639	11.5	29
127	Magnetic structure determination from the magnetic pair distribution function (mPDF): ground state of MnO. <i>Acta Crystallographica Section A: Foundations and Advances</i> , 2015 , 71, 325-34	1.7	29
126	Symmetry Breaking in Nanostructure Development of Carbogenic Molecular Sieves: Effects of Morphological Pattern Formation on Oxygen and Nitrogen Transport. <i>Chemistry of Materials</i> , 1996 , 8, 2159-2171	9.6	29
125	Towards atomistic understanding of polymorphism in the solvothermal synthesis of ZrO nanoparticles. <i>Acta Crystallographica Section A: Foundations and Advances</i> , 2016 , 72, 645-650	1.7	28
124	Nanoscale Btructural domains in the phonon-glass thermoelectric material I n4Sb3. <i>Physical Review B</i> , 2007 , 75,	3.3	28
123	Improved Models for Metallic Nanoparticle Cores from Atomic Pair Distribution Function (PDF) Analysis. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 29498-29506	3.8	28
122	Toward Phase Quantification at the Nanoscale Using the Total Scattering Pair Distribution Function (TSPDF) Method: Recrystallization of Cryomilled Sulfamerazine. <i>Crystal Growth and Design</i> , 2013 , 13, 4239-4244	3.5	27
121	Hollandites as a new class of multiferroics. <i>Scientific Reports</i> , 2014 , 4, 6203	4.9	26
120	Using a machine learning approach to determine the space group of a structure from the atomic pair distribution function. <i>Acta Crystallographica Section A: Foundations and Advances</i> , 2019 , 75, 633-643	3 ^{1.7}	26
119	Autonomous experimentation systems for materials development: A community perspective. <i>Matter</i> , 2021 , 4, 2702-2726	12.7	26
118	Recrystallization, Phase Composition, and Local Structure of Amorphous Lactose from the Total Scattering Pair Distribution Function. <i>Crystal Growth and Design</i> , 2016 , 16, 210-220	3.5	25
117	Reconciliation of local and long-range tilt correlations in underdoped La2MBaxCuO4(0MD.155). <i>Physical Review B</i> , 2015 , 91,	3.3	25
116	Evidence for short-range-ordered charge stripes far above the charge-ordering transition in La1.67Sr0.33NiO4. <i>Physical Review Letters</i> , 2013 , 111, 096404	7.4	25
115	In-Situ Monitoring of Particle Growth at PEMFC Cathode under Accelerated Cycling Conditions. <i>Electrochemical and Solid-State Letters</i> , 2012 , 15, B72		25
114	Correlated local dipoles in PbTe. <i>Physical Review Materials</i> , 2018 , 2,	3.2	25

113	Local Environment of Terbium(III) Ions in Layered Nanocrystalline Zirconium(IV) Phosphonate-Phosphate Ion Exchange Materials. <i>Inorganic Chemistry</i> , 2017 , 56, 8837-8846	5.1	24
112	Verification of Anderson Superexchange in MnO via Magnetic Pair Distribution Function Analysis and ablinitio Theory. <i>Physical Review Letters</i> , 2016 , 116, 197204	7.4	23
111	Bulk metallic glass-like scattering signal in small metallic nanoparticles. ACS Nano, 2014, 8, 6163-70	16.7	23
110	Cu(x)UTe3: stabilization of UTe3 in the ZrSe3 structure type via copper insertion. The artifact of Te-Te chains and evidence for distortions due to long range modulations. <i>Journal of the American Chemical Society</i> , 2001 , 123, 4755-62	16.4	23
109	Local atomic and magnetic structure of dilute magnetic semiconductor (Ba,K)(Zn,Mn)2As2. <i>Physical Review B</i> , 2016 , 94,	3.3	23
108	Structures of Hard Phases in Thermoplastic Polyurethanes. <i>Macromolecules</i> , 2016 , 49, 7350-7358	5.5	23
107	Intra-unit-cell nematic charge order in the titanium-oxypnictide family of superconductors. <i>Nature Communications</i> , 2014 , 5, 5761	17.4	22
106	Detailed mapping of the local Ir4+ dimers through the metal-insulator transitions of CuIr2S4 thiospinel by X-ray atomic pair distribution function measurements. <i>Physical Review Letters</i> , 2011 , 106, 045501	7.4	22
105	Accurate Structure Determination of Mo6Sylz Nanowires from Atomic Pair Distribution Function (PDF) Analysis. <i>Chemistry of Materials</i> , 2006 , 18, 100-106	9.6	22
104	Volume-wise destruction of the antiferromagnetic Mott insulating state through quantum tuning. <i>Nature Communications</i> , 2016 , 7, 12519	17.4	22
103	Local orbital degeneracy lifting as a precursor to an orbital-selective Peierls transition. <i>Nature Communications</i> , 2019 , 10, 3638	17.4	21
102	Crystal structure solution from experimentally determined atomic pair distribution functions. <i>Journal of Applied Crystallography</i> , 2010 , 43, 623-629	3.8	21
101	Stoichiometric Control over Ferroic Behavior in Ba(Ti1NFex)O3 Nanocrystals. <i>Chemistry of Materials</i> , 2019 , 31, 1318-1335	9.6	21
100	Network-Forming Liquids from Metal-Bis(acetamide) Frameworks with Low Melting Temperatures. <i>Journal of the American Chemical Society</i> , 2021 , 143, 2801-2811	16.4	20
99	Hollow organic capsules assemble into cellular semiconductors. <i>Nature Communications</i> , 2018 , 9, 1957	17.4	20
98	Room temperature local nematicity in FeSe superconductor. <i>Physical Review B</i> , 2019 , 100,	3.3	19
97	Recent advances and applications of deep learning methods in materials science. <i>Npj Computational Materials</i> , 2022 , 8,	10.9	19
96	Evidence for Anomalous Bond Softening and Disorder Below 2 nm Diameter in Carbon-Supported Platinum Nanoparticles from the Temperature-Dependent Peak Width of the Atomic Pair Distribution Function. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 7226-7230	3.8	18

95	Magnetic phase transition in V2O3 nanocrystals. <i>Physical Review B</i> , 2010 , 82,	3.3	18
94	Determination of standard uncertainties in fits to pair distribution functions. <i>Acta Crystallographica Section A: Foundations and Advances</i> , 2004 , 60, 315-7		18
93	Calibration and data collection protocols for reliable lattice parameter values in electron pair distribution function studies. <i>Journal of Applied Crystallography</i> , 2015 , 48, 244-251	3.8	17
92	Towards solution and refinement of organic crystal structures by fitting to the atomic pair distribution function. <i>Acta Crystallographica Section A: Foundations and Advances</i> , 2016 , 72, 62-72	1.7	17
91	Towards a robust ad hoc data correction approach that yields reliable atomic pair distribution functions from powder diffraction data. <i>Journal of Physics Condensed Matter</i> , 2013 , 25, 454202	1.8	17
90	Planar nets of Ti atoms comprising squares and rhombs in the new binary antimonide Ti2Sb. <i>Journal of the American Chemical Society</i> , 2004 , 126, 8295-302	16.4	17
89	Cluster-mining: an approach for determining core structures of metallic nanoparticles from atomic pair distribution function data. <i>Acta Crystallographica Section A: Foundations and Advances</i> , 2020 , 76, 24-31	1.7	17
88	Synthesis and Properties of Plasmonic Boron-Hyperdoped Silicon Nanoparticles. <i>Advanced Functional Materials</i> , 2019 , 29, 1807788	15.6	17
87	Anthracene as a Launchpad for a Phosphinidene Sulfide and for Generation of a Phosphorus-Sulfur Material Having the Composition PS, a Vulcanized Red Phosphorus That Is Yellow. <i>Journal of the American Chemical Society</i> , 2019 , 141, 431-440	16.4	17
86	Structureproperty insights into nanostructured electrodes for Li-ion batteries from local structural and diffusional probes. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 127-137	13	17
85	Emphanitic anharmonicity in PbSe at high temperature and anomalous electronic properties in the PbQ(Q=S,Se,Te) system. <i>Physical Review B</i> , 2018 , 98,	3.3	17
84	Recent results on assigned and unassigned distance geometry with applications to protein molecules and nanostructures. <i>Annals of Operations Research</i> , 2018 , 271, 161-203	3.2	17
83	Structural Evolution of Iron Antimonides from Amorphous Precursors to Crystalline Products Studied by Total Scattering Techniques. <i>Journal of the American Chemical Society</i> , 2015 , 137, 9652-8	16.4	16
82	PDFgetN3: atomic pair distribution functions from neutron powder diffraction data using adlhoc corrections. <i>Journal of Applied Crystallography</i> , 2018 , 51, 1492-1497	3.8	16
81	Robust structure and morphology parameters for CdS nanoparticles by combining small-angle X-ray scattering and atomic pair distribution function data in a complex modeling framework. <i>Journal of Applied Crystallography</i> , 2014 , 47, 561-565	3.8	16
80	Unlocking the structure of mixed amorphous-crystalline ceramic oxide films synthesized under low temperature electromagnetic excitation. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 18434-18441	13	16
79	LATTICE EFFECTS IN HIGH-TC SUPERCONDUCTORS 1996 , 265-373		16
, ,	EATTICE ETTECTS IN THIGHT TO SOT ENCONDOCTORS 1990, 203 373		

77	Modelling and validation of particle size distributions of supported nanoparticles using the pair distribution function technique. <i>Journal of Applied Crystallography</i> , 2017 , 50, 741-748	3.8	15
76	On the estimation of statistical uncertainties on powder diffraction and small-angle scattering data from two-dimensional X-ray detectors. <i>Journal of Applied Crystallography</i> , 2014 , 47, 1273-1283	3.8	15
75	Local structural evidence for strong electronic correlations in spinel LiRh2O4. <i>Physical Review B</i> , 2013 , 88,	3.3	15
74	Diverse structural and magnetic properties of differently prepared MnAs nanoparticles. <i>ACS Nano</i> , 2011 , 5, 2970-8	16.7	15
73	Total-scattering pair-distribution function of organic material from powder electron diffraction data. <i>Microscopy and Microanalysis</i> , 2015 , 21, 459-71	0.5	13
7 ²	The Liga algorithm for ab initio determination of nanostructure. <i>Acta Crystallographica Section A:</i> Foundations and Advances, 2008 , 64, 631-40		13
71	PDF from X-ray powder diffraction for nanometer-scale atomic structure analysis of quasicrystalline alloys. <i>Zeitschrift Fur Kristallographie - Crystalline Materials</i> , 2005 , 220, 962-967	1	13
70	Pair Distribution Function Analysis of ZrO[Nanocrystals and Insights in the Formation of ZrOE/Ba[IutD[Nanocomposites. <i>Materials</i> , 2018 , 11,	3.5	13
69	Cu(Ir xCrx)BDa model system for studying nanoscale phase coexistence at the metal-insulator transition. <i>Scientific Reports</i> , 2014 , 4, 4081	4.9	12
68	Local structure of ReO3 at ambient pressure from neutron total-scattering study. <i>Physical Review B</i> , 2012 , 86,	3.3	12
67	Structural compliance, misfit strain, and stripe nanostructures in cuprate superconductors. <i>Physical Review B</i> , 2002 , 66,	3.3	11
66	Structural Analysis of Molecular Materials Using the Pair Distribution Function. <i>Chemical Reviews</i> , 2021 ,	68.1	11
65	Photoinduced dynamics of nematic order parameter in FeSe. <i>Physical Review B</i> , 2019 , 99,	3.3	10
64	Enhanced thermoelectric power and electronic correlations in RuSe2. <i>APL Materials</i> , 2015 , 3, 041513	5.7	10
63	Understanding electronic peculiarities in tetragonal FeSe as local structural symmetry breaking. <i>Physical Review B</i> , 2020 , 102,	3.3	10
62	Understanding the Formation and Evolution of Ceria Nanoparticles Under Hydrothermal Conditions. <i>Angewandte Chemie</i> , 2012 , 124, 9164-9167	3.6	10
61	Quantitative Structural Characterization of Catalytically Active TiO2 Nanoparticles. <i>ACS Applied Nano Materials</i> , 2019 , 2, 6268-6276	5.6	9
60	Algorithm for systematic peak extraction from atomic pair distribution functions. <i>Acta Crystallographica Section A: Foundations and Advances</i> , 2015 , 71, 392-409	1.7	9

(2021-2020)

59	Ultrafast x-ray diffraction study of melt-front dynamics in polycrystalline thin films. <i>Science Advances</i> , 2020 , 6, eaax2445	14.3	9
58	Real-space investigation of short-range magnetic correlations in fluoride pyrochlores NaCaCo2F7 and NaSrCo2F7 with magnetic pair distribution function analysis. <i>Physical Review Materials</i> , 2017 , 1,	3.2	9
57	Structure-mining: screening structure models by automated fitting to the atomic pair distribution function over large numbers of models. <i>Acta Crystallographica Section A: Foundations and Advances</i> , 2020 , 76, 395-409	1.7	9
56	A cloud platform for atomic pair distribution function analysis: PDFitc. <i>Acta Crystallographica Section A: Foundations and Advances</i> , 2021 , 77, 2-6	1.7	9
55	Nanometre-scale structure from powder diffraction: total scattering and atomic pair distribution function analysis 2019 , 649-672		8
54	Zirconium Phosphate: The Pathway from Turbostratic Disorder to Crystallinity. <i>Inorganic Chemistry</i> , 2019 , 58, 14260-14274	5.1	8
53	The real structure of Na3BiO4 by electron microscopy, HR-XRD and PDF analysis. <i>Zeitschrift Fur Kristallographie - Crystalline Materials</i> , 2005 , 220, 231-244	1	8
52	Teaching diffraction using computer simulations over the Internet. <i>Journal of Applied Crystallography</i> , 2001 , 34, 767-770	3.8	8
51	Microscopic Charge Inhomogeneities in Underdoped La2\sumset SrxCuO4: Local Structural Evidence. Journal of Superconductivity and Novel Magnetism, 2000 , 13, 713-722		8
50	A thermal-gradient approach to variable-temperature measurements resolved in space. <i>Journal of Applied Crystallography</i> , 2020 , 53, 662-670	3.8	8
49	Chapter 16:Local Structure from Total Scattering and Atomic Pair Distribution Function (PDF) Analysis 2008 , 464-493		8
48	Cooperative coupling of static magnetism and bulk superconductivity in the stripe phase of La2\(\text{BaxCuO4}: \text{ Pressure- and doping-dependent studies. } \text{ Physical Review B, 2016, 94,}	3.3	8
47	Local Structural Effects Due to Micronization and Amorphization on an HIV Treatment Active Pharmaceutical Ingredient. <i>Molecular Pharmaceutics</i> , 2020 , 17, 2370-2389	5.6	8
46	Barium titanate nanoparticles: Short-range lattice distortions with long-range cubic order. <i>Physical Review B</i> , 2018 , 98,	3.3	8
45	Local structural investigation of SmFeAsOExF(x) high temperature superconductors. <i>Journal of Physics Condensed Matter</i> , 2011 , 23, 272201	1.8	7
44	Structural Response to Local Charge Order in Underdoped but Superconducting La2-x(Sr,Ba)xCuO4. <i>International Journal of Modern Physics B</i> , 2003 , 17, 3640-3647	1.1	7
43	Defect-Accommodating Intermediates Yield Selective Low-Temperature Synthesis of YMnO Polymorphs. <i>Inorganic Chemistry</i> , 2020 , 59, 13639-13650	5.1	7
42	A high throughput optical method for studying compositional effects in electrocatalysts for CO reduction. <i>Nature Communications</i> , 2021 , 12, 1114	17.4	7

41	sasPDF: pair distribution function analysis of nanoparticle assemblies from small-angle scattering data. <i>Journal of Applied Crystallography</i> , 2020 , 53, 699-709	3.8	6
40	Pressure tuning of structure, superconductivity, and novel magnetic order in the Ce-underdoped electron-doped cuprate T?Br1.3\text{\text{B}}La0.7CexCuO4 (x=0.1). <i>Physical Review B</i> , 2017 , 96,	3.3	6
39	Ligand-induced symmetry breaking, size and morphology in colloidal lead sulfide QDs: from classic to thiourea precursors2, 1		6
38	Active Reaction Control of Cu Redox State Based on Real-Time Feedback from In Situ Synchrotron Measurements. <i>Journal of the American Chemical Society</i> , 2020 , 142, 18758-18762	16.4	6
37	Size-Dependent Lattice Dynamics of Atomically Precise Cadmium Selenide Quantum Dots. <i>Physical Review Letters</i> , 2019 , 122, 026101	7.4	6
36	Algorithm for distance list extraction from pair distribution functions. <i>Acta Crystallographica Section A: Foundations and Advances</i> , 2019 , 75, 658-668	1.7	5
35	Quantitative nanoparticle structures from electron crystallography data. <i>Physical Review B</i> , 2010 , 81,	3.3	5
34	Microporous Battery Electrodes from Molecular Cluster Precursors. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 11292-11297	9.5	4
33	Advances in Scattering Probes for Materials. MRS Bulletin, 2010, 35, 495-503	3.2	4
32	Superatomic solid solutions. <i>Nature Chemistry</i> , 2021 , 13, 607-613	17.6	4
32	Superatomic solid solutions. <i>Nature Chemistry</i> , 2021 , 13, 607-613 Validation of non-negative matrix factorization for rapid assessment of large sets of atomic pair distribution function data. <i>Journal of Applied Crystallography</i> , 2021 , 54, 768-775	17.6 3.8	4
	Validation of non-negative matrix factorization for rapid assessment of large sets of atomic pair		4 4 3
31	Validation of non-negative matrix factorization for rapid assessment of large sets of atomic pair distribution function data. <i>Journal of Applied Crystallography</i> , 2021 , 54, 768-775 Resonant spin tunneling in randomly oriented nanospheres of Mn12 acetate. <i>Physical Review B</i> ,	3.8	
31	Validation of non-negative matrix factorization for rapid assessment of large sets of atomic pair distribution function data. <i>Journal of Applied Crystallography</i> , 2021 , 54, 768-775 Resonant spin tunneling in randomly oriented nanospheres of Mn12 acetate. <i>Physical Review B</i> , 2015 , 91, Nanoscale coherent intergrowthlike defects in a crystal of La1.9Ca1.1Cu2O6+[made]	3.8	3
31 30 29	Validation of non-negative matrix factorization for rapid assessment of large sets of atomic pair distribution function data. <i>Journal of Applied Crystallography</i> , 2021 , 54, 768-775 Resonant spin tunneling in randomly oriented nanospheres of Mn12 acetate. <i>Physical Review B</i> , 2015 , 91, Nanoscale coherent intergrowthlike defects in a crystal of La1.9Ca1.1Cu2O6+lmade superconducting by high-pressure oxygen annealing. <i>Physical Review B</i> , 2014 , 90, Local Lattice Dynamics in the Mg0.5Al0.5B2 Superconductor. <i>Journal of Superconductivity and Novel</i>	3.8 3.3 3.3	3
31 30 29 28	Validation of non-negative matrix factorization for rapid assessment of large sets of atomic pair distribution function data. <i>Journal of Applied Crystallography</i> , 2021 , 54, 768-775 Resonant spin tunneling in randomly oriented nanospheres of Mn12 acetate. <i>Physical Review B</i> , 2015 , 91, Nanoscale coherent intergrowthlike defects in a crystal of La1.9Ca1.1Cu2O6+lmade superconducting by high-pressure oxygen annealing. <i>Physical Review B</i> , 2014 , 90, Local Lattice Dynamics in the Mg0.5Al0.5B2 Superconductor. <i>Journal of Superconductivity and Novel Magnetism</i> , 2007 , 20, 505-510 Complete Strain Mapping of Nanosheets of Tantalum Disulfide. <i>ACS Applied Materials & Disulfide Acts Applied Materials & Disulfide Disu</i>	3.8 3.3 3.3	3 3
31 30 29 28	Validation of non-negative matrix factorization for rapid assessment of large sets of atomic pair distribution function data. <i>Journal of Applied Crystallography</i> , 2021 , 54, 768-775 Resonant spin tunneling in randomly oriented nanospheres of Mn12 acetate. <i>Physical Review B</i> , 2015 , 91, Nanoscale coherent intergrowthlike defects in a crystal of La1.9Ca1.1Cu2O6+linade superconducting by high-pressure oxygen annealing. <i>Physical Review B</i> , 2014 , 90, Local Lattice Dynamics in the Mg0.5Al0.5B2 Superconductor. <i>Journal of Superconductivity and Novel Magnetism</i> , 2007 , 20, 505-510 Complete Strain Mapping of Nanosheets of Tantalum Disulfide. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 43173-43179 Two-orbital degeneracy lifted local precursor to a metal-insulator transition in MgTi2O4. <i>Physical</i>	3.8 3.3 3.3 1.5	3 3 3

23	Synthesis, characterization, and growth mechanism of motifs of ultrathin cobalt-substituted NaFeSi2O6 nanowires. <i>CrystEngComm</i> , 2018 , 20, 223-236	3.3	3
22	Powder diffraction. <i>Nature Reviews Methods Primers</i> , 2021 , 1,		2
21	Hidden Local Symmetry Breaking in Silver Diamondoid Compounds is Root Cause of Ultralow Thermal Conductivity <i>Advanced Materials</i> , 2022 , e2202255	24	2
20	Quantitative Structural Analysis of Nanoparticles Using Electron Pair Distribution Function (ePDF). <i>Microscopy and Microanalysis</i> , 2014 , 20, 630-631	0.5	1
19	Lattice Effects in Perovskite and Pyrochlore CMR Materials. <i>Materials Research Society Symposia Proceedings</i> , 1997 , 475, 533		1
18	Structure of crystallographically challenged materials by profile analysis of atomic pair distribution functions: study of LiMoS2 and mesostructured MnGe4S10. <i>Materials Research Society Symposia Proceedings</i> , 2001 , 678, 151		1
17	High real-space resolution structure of materials by high-energy x-ray diffraction. <i>Materials Research Society Symposia Proceedings</i> , 1999 , 590, 151		1
16	Determination of The Local Atomic Structure of LA2-x(SR,BA)xCUO4 Materials From Neutron Powder Diffraction Data. <i>Materials Research Society Symposia Proceedings</i> , 1994 , 376, 523		1
15	Pair Distribution Function Technique: Principles and Methods. <i>NATO Science for Peace and Security Series B: Physics and Biophysics</i> , 2012 , 183-193	0.2	1
14	Toward In Situ Synchrotron Mapping of Crystal Selection Processes during Crystal Growth. <i>Chemistry of Materials</i> , 2021 , 33, 3359-3367	9.6	1
13	Dual Orbital Degeneracy Lifting in a Strongly Correlated Electron System. <i>Physical Review Letters</i> , 2021 , 126, 186402	7.4	1
12	Investigating short-range magnetic correlations in real space with the magnetic pair distribution function (mPDF). <i>Neutron News</i> , 2016 , 27, 14-16	0.4	1
11	Novel trends in pair distribution function approaches on bulk systems with nanoscale heterogeneities. <i>Neutron News</i> , 2016 , 27, 27-31	0.4	1
10	Mesostructured Non-Oxidic Solids with Adjustable Worm-hole Shaped Pores: M-Ge-Q (Q=S, Se) Frameworks Based on Tetrahedral [Ge4Q10]4[Clusters 2000 , 12, 85		1
9	From Crystals to Nanocrystals: Semiconductors and Beyond. Fundamental Materials Research, 2002, 153-	-168	1
8	Ferroelectric state and polarization switching behaviour of ultrafine BaTiO3 nanoparticles with large-scale size uniformity. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 5267-5276	7.1	Ο
7	Modern crystallography and its foundations. <i>Acta Crystallographica Section A: Foundations and Advances</i> , 2021 , 77, 1	1.7	О
6	Linking far-from-equilibrium defect structures in ceramics to electromagnetic driving forces. Journal of Materials Chemistry A, 2021 , 9, 8425-8434	13	O

5	Controlling desolvation through polymer-assisted grinding. CrystEngComm, 2022 , 24, 2305-2313	3.3	О
4	Mechanistic Insight into the Precursor Chemistry of ZrO and HfO Nanocrystals; towards Size-Tunable Syntheses <i>Jacs Au</i> , 2022 , 2, 827-838		O
3	nmfMapping: a cloud-based web application for non-negative matrix factorization of powder diffraction and pair distribution function datasets <i>Acta Crystallographica Section A: Foundations and Advances</i> , 2022 , 78, 242-248	1.7	О
2	Robust Nanostructure from High Throughput Powder Diffraction Data. <i>Microscopy and Microanalysis</i> , 2017 , 23, 172-173	0.5	

Charge Inhomogeneities in the Colossal Magnetoresistant Manganites From the Local Atomic Structure. *Materials Research Society Symposia Proceedings*, **1999**, 602, 177